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Metastability for the contact process with two species and priority.

Mariela Pentón Machado.

Orientadora: Maria Eulalia Vares.

O processo de contato um processo estocstico que pode ser interpretado como a evoluo
temporal de uma certa populao. Neste trabalho estudamos uma variante do processo de
contato clssico onde temos dois tipos de indivduos na populao, os indivduos de tipo 1 e
os de tipo 2. Para este caso provamos que o modelo apresenta metaestabilidade. Um
sistema considerado em uma situao metaestvel si se comporta como uma distribuio de
falso equilbrio durante um tempo grande at que de forma abrupta alcana o verdadeiro
equilbrio. Na abordagem utilizada para obter a metaestabilidade so principais os conceitos
de renormalizao e conhecimentos de percolao orientada.

Palavras chaves: Processo de contato, percolao.
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Metastability for the contact process with two species and priority.

Mariela Pentón Machado.

Advisor: Maria Eulalia Vares.

The contact process is a stochastic process that can be interpreted as the time evolution
of a certain population. This process was given by Ted Harris in 1974. In this work, we
study a variation of the classic contact where there are two types of individuals, individuals
of type 1 and individuals of type 2. In this case, we prove that this process presents the
metastability phenomenon. A system is considered in a metastable situation if it behaves
as in a false equilibrium distribution for a random long time until abruptly it gets the true
equilibrium. In the approach to obtain the metastability for this process we use of concept
of renormalization and results of oriented percolation.

Keywords: Contact process, percolation.
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Introduction

The phenomenon of metastability has been widely study in physics and mathematics.

A system is considered in a metastable situation if it behaves as in a false equilibrium

distribution for a long random time until abruptly it gets to the true equilibrium. Classical

examples of this phenomenon include the behavior of supercooled vapours and liquids,

and supersaturated vapours and solutions. For a detailed discussion on metastability in

stochastic processes and references, see the monographs [4] and [17].

A specific stochastic process that fits into this situation is the contact process, introduced

by Harris in [11]. It is a simple model for the spread of an infection, where individuals are

identified with the vertices of a given graph which we may take as Zd. In this model every

infected individual can propagate the infection to some neighbor at rate λ and it becomes

healthy at rate 1. The contact process can also be interpreted as the time evolution of

a certain population, where a site is now “occupied” (in correspondence to “infected”) or

“empty”(in correspondence to“healthy”).

An important characteristic of the Harris contact process is that it presents a dynamical

phase transition, namely: there exists a critical value λc for the infection rate such that if λ

is larger than λc there is a non trivial invariant measure µ different from δ∅. On the other

hand, when the process is restricted to a finite volume it is a finite Markov chain and δ∅

is the only equilibrium state. Nevertheless, for suitable initial conditions, the restriction of

the non-trivial invariant measure µ to this finite volume behaves as a metastable state as

described above. This was first proved in [5] for the one-dimensional case and λ sufficiently

large. In this paper, the authors introduced a pathwise point of view for the study of

metastability in stochastic dynamics. That is, they proposed to describe the dynamical

phenomenon of metastability through the convergence of suitably rescaled transition time

to an exponential distribution and with a stabilization of suitably rescaled time averages
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along the evolution around a non equilibrium distribution. This last convergence is named

thermalization property. The results in [5] were extended in [18] to the whole supercritical

region. A different proof of the asymptotic exponential time was proved in [9], which also

describes the asymptotic behavior of the logarithm of the time of extinction. These last

results were extended for dimension d ≥ 2 in [14] and [15], respectively. The thermalization

property for the contact process in dimension d ≥ 2 was proved in [19].

There are some examples of processes inspired by the contact process that try to describe

what happens if the population is not homogeneous, in the sense that some individuals have

different characteristics. An example is the process introduced in [10] in which every site

in Z can be occupied by particles of type 1 or 2, but the particles of type 1 have priority

throughout the environment.

The aim of this work is the study of a metastable phenomenon for a stochastic process

that can be interpreted as the time evolution of a population, which has two different species

and each of them has a favorable region in the environment. In the process we present, the

priority is no longer spatially homogeneous. Specifically, we will consider Z and a layer of

Z2 as the environments, which will be denoted by S, and we choose a partition (R1,R2) of

the environment, such that the particles of type 1 have priority in R1 and the particles of

type 2 in R2.

The process we are interested is a continuous time Markov process with state space

{0, 1, 2}S and we denote it by {ζt}t. If the site x is occupied at time t by a particle of type i

(i=1,2) we set ζt(x) = i, and if the site x is empty at time t we set ζt(x) = 0. We denote the

flips rates at x in a configuration ζ ∈ {0, 1, 2}S by c(x, ζ, ·) and we define them as follows

c(x, ζ, 1→ 0) = c(x, ζ, 2→ 0) = 1,

c(x, ζ, 0→ i) = λ
∑

y: 0<|x−y|≤R
1ζ(y)=i, i = 1, 2,

c(x, ζ, 2→ 1) = λ
∑

y: 0<|x−y|≤R
1ζ(y)=11{x∈R1},

c(x, ζ, 1→ 2) = λ
∑

y: 0<|x−y|≤R
1ζ(y)=11{x∈R2},

where R is a scalar larger than 1, it is known as the range of the process. During the

thesis we refer to the process with those flips rates as the contact process with two types of

particles and priority.

We prove that the process, when beginning with full occupancy of particles of type 1 in
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R1 and particles of type 2 in R2, presents the metastable phenomenon. More precisely if

the dynamics is restricted to a finite box with dimensions depending on N , the time when

one of the two families of particles becomes extinct, when properly rescaled, converges to

the exponential distribution as N tends to infinite. In the case that S = Z we also prove

a result which gives information on the asymptotic order of magnitude of this time (for

the limit in N). Together with known results, this implies the existence of two metastable

regimes for this process: one with both species and the standard one for the contact process.

This work is organized in four chapters. Chapter 1 contains five sections. In Section

1.1 we introduce the Harris graph and some notations for the contact process that will

be used during the work. In Section 1.2 we give a graphical definition of our process

when it is restricted to a spatial box. In Section 1.3 we recall some results on oriented

percolation that will be used in the next chapters. In Section 1.4 we review the definition

of Mountford-Sweet renormalization. Finally, in Section 1.5 we also review the definition

of Benzuidenhout-Grimmett renormalization.

In Chapter 2 we shall examine the case when S = Z, R1 = (−∞, 0], R2 = [1,∞),

initial population 1(−∞,0] + 21[1,∞) and R ≥ 1. In Section 2.1, we define barriers in a finite

interval; this is a central tool in the development of the next sections. In Section 2.2, we

present a result about the metastability for the contact process in dimension 1 with range

R > 1. In Section 2.3, we prove that the time when one of the two families becomes extinct

in the interval converges to an exponential distribution as the length of the interval tends

to infinite. In Section 2.4, we prove the convergence in probability of the logarithm of this

time divided by the length of the interval to a positive constant.

In Chapter 3 we consider S = [−L,L] × Z, R = 1, R1 = [−L,L] × (−∞, 0] and R2 =

[−L,L]×[1,∞) and initial population 1[−L,L]×(−∞,0]+21[−L,L]×[1,∞), where L is an arbitrary

but fixed positive number. In Section 3.1 we define an extension of Mountford-Sweet

renormalization for the layer. In Section 3.2 we prove that the contact process with two

types of particles and priority in the layer presents a metastable behavior.

Chapter 4 has three sections. In Section 4.2 we prove that for the process treated in

Chapter 2 there exists an invariant measure that gives total measure to the configurations

with infinity particles of type 1 and infinity particles of type 2. In Section 4.3 we choose

S = Z, R1 = (−∞, 0], R2 = [1,∞), initial population 21(−∞,0] + 1[1,∞) and R = 1. For

this case we prove that in an interval of length N the time when one of the species win

the competition is at most linear on N . This time is pretty small in contrast with the
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equivalent time when each species begins in their favorable regions.
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Chapter 1

Preliminaries

1.1 Contact Process

In this section, we recall the Harris construction introduced in [11]. Using this construc-

tion, we define the classic contact process.

In order to define the contact process with range R, we consider a collection of inde-

pendent Poisson processes on [0,∞)

{P x}x∈Zd with rate 1,

{P x→y}{x,y∈Zd: 0<|x−y|≤R} with rate λ,
(1.1.1)

where R ∈ N. Graphically, we identify the realization of the process P x at a point

(x, t) ∈ Zd × [0,+∞), with a cross mark, and a realization of the process P x→y at the

same point with an arrow following the direction x to y. We denote by H a realization of

all Poisson processes, this is a Harris construction (see Figure 1.1). Whenever we refer to

the probability of events involving the contact process, we implicitly assume that P is a

probability under which H has the law defined above; sometimes, we write Pλ to be explicit

about the value of the infection rate. Given (x, t) ∈ Zd × [0,∞) we define Θ(x,t)(H) as the

shifting of the Harris construction H, where (x, t) becomes the origin.
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Figure 1.1: An example of a Harris construction for R > 1.

A path on H is an oriented path following the positive direction of time t which passes

along the arrows in the direction of them but does not pass through any cross mark. More

precisely, we denote (x, s) → (y, t), with 0 < s < t, if there exists a càdlàg γ : [s, t] → Zd

such that:

• γ(s) = x, γ(t) = y,

• γ(z) 6= γ(z−) only if z ∈ P γ(z−)→γ(z),

• ∀z ∈ [s, t], z /∈ P γ(z).

For A and B subsets of Zd and 0 ≤ s < t we say that A× {s} is connected with B × {t} if

there are x ∈ A and y ∈ B such that (x, s)→ (y, t), and we denote by A× {s} → B × {t}.
To simplify the notation, throughout all the work for every spatial set I ⊂ Rd we identify

I ∩ Zd. Also, we identify every configuration η ∈ {0, 1}Zd with the subset {x ∈ Zd : η(x) =

1}.
Given a Harris construction and a subset A of Zd, we can define the contact process

beginning at time s, with initial configuration A as follows

(s)ξ
A(t) = {x : exists y ∈ A such that (y, s)→ (x, t)}, (1.1.2)

in the case s = 0 we omit the underscript (0). We also define the time of extinction as

follows

TA = inf{t > 0 : ξAt = ∅}. (1.1.3)
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Let A and C be subsets of Zd such that A ⊂ C, we define the contact process restricted to

C with initial configuration A as

ξAC (t) = {x : exists y ∈ A such that (y, 0)→ (x, t) inside C}. (1.1.4)

In the special case that C = [1, N ]d we use the notation ξAN (t). For this process, we define

the time of extinction as follows

TAN = inf{t > 0 : ξAN (t) = ∅}. (1.1.5)

Special notation: ξ1(t) for initial configuration Zd; ξx(t) and T x for initial configuration

{x}; ξ1N (t) , T 1
N for initial configuration full occupancy in [1, N ]d, ξxN (t), T xN for initial

configuration {x}.
For a time t and a set A, we define the dual contact process at time s ∈ [0, t], with

initial configuration A as

ξ̃A,t(s) = {x : exists y ∈ A such that (x, t− s)→ (y, t)}. (1.1.6)

We observe that the process {ξ̃A,t(s)}0≤s≤t has the same law as the contact process until

time t with initial configuration A.

As we mentioned in the introduction, the contact process presents a phase transition

with respect to the rate of infection λ: there exists a critical parameter λc = λc(d,R)

defined as follows

λc = inf{λ : Pλ(T 0 =∞) > 0}.

For all λ > λc all invariant measure of the contact process is a convex combination of δ∅

and a non trivial measure µλ. During all our work we are considering λ > λc.

For the contact process in dimension 1 and finite range with initial configuration (−∞, 0],

we denote the rightmost infected particle by

r
(−∞,0]
t = max{x : ξ(−∞,0](t)(x) = 1} (1.1.7)

and the leftmost infected particle connected with [0,∞) at time t as

l
[0,∞)
t = min{x : ξ[0,∞)(t)(x) = 1}. (1.1.8)
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By the symmetry of the Harris construction, we have that r
(−∞,0]
t has the same law as

−l[0,∞)
t for all t. In [12] is proved that for R = 1 there exists α > 0 such that

r
(−∞,0]
t

t
−→
t→∞

α almost surely. (1.1.9)

This result is obtained using the Subadditive Ergodic Theorem and monotonicity arguments

that can be adapted for the case R > 1.

From the Harris construction we observe that if A ⊂ B then ξAt ⊂ ξBt for all t. This

property is called attractiveness.

1.2 Graphical construction of the contact process with two

types of particles and priority

In this section we give a graphical construction of the contact process with two types

of particles and priority. This graphical definition uses the Harris construction and gives a

natural coupling with the usual contact process.

Let A and B be two disjoint subsets of [−N+1, N ]d, we denote by {ζA,B,Nt }t the contact

process restricted to the set [−N + 1, N ]d with two types of particles, initial configuration

1A + 21B and the particles of type 1 having priority in [−N + 1, N ]d−1 × [−N + 1, 0]

and the type 2 in [−N + 1, N ]d−1 × [1, N ]. In this case, it is simple to state the defini-

tion of the process in terms of a Harris construction, since we are dealing with a càdlàg

stochastic process with jumps only in the times of the Poisson processes {P x}x∈[−N+1,N ]d or

{P y→x}{y,x∈[−N+1,N ]d: 0<|x−y|≤R}. Let t be one of those times, two scenarios are possible:

(1) t ∈ P x for some x. In this case, x is empty at this time (ζA,B,Nt (x) = 0);

(2) t ∈ P y→x for some x and y. If x is occupied by a particle of type i (i = 1, 2)

and x is in the region of priority of this kind of particles, then nothing changes at

x. Out of this situation, x become occupied by the type of particle that is in y

(ζA,B,Nt (x) = ζA,B,Nt (y)).

We are interested in the study of the time when one of the families became extinct and we

denote this time by τA,BN . More precisely

τA,BN = inf{t : ζA,B,Nt (x) 6= 1 ∀ x, or ζA,B,Nt (x) 6= 2 ∀ x}. (1.2.1)
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Special notation: ζ1,2,Nt and τ1,2N , for initial configuration 1[−N+1,N ]d−1×[−N+1,0] +

21[−N+1,N ]d−1×[1,N ].

Remark 1.1. Since the classic contact process and the contact process with two types of

particles and priority are defined using the same Harris construction H, both processes are

defined in the same probability space. This coupling will be used in all the work.

The next lemma follows from the definition of the process and it is very useful for

proving a property called regeneration that will be explored in Section 2.2. The lemma

states that if at time t a site x is occupied by a particle of type 1 (2), there exists a path

of particles of type 1 (2) connecting the initial configuration with (x, t).

Lemma 1.1. Let A and B be disjoint subsets of [−N + 1, N ]d. Given the construction of

the contact process with two types of particles and initial configuration ζA,B,N0 = 1A + 21B,

we have that

ζA,B,Nt (x) = 1⇔ There exists a path γ connecting A with (x, t)

such that ζA,B,Ns (γ(s)) = 1, for all s, 0 ≤ s ≤ t,

where x ∈ [−N + 1, N ]d and t > 0.

Proof. (⇐) It is clear.

(⇒) For a given realization of the Harris construction, let m be the number of the marks

of the Poisson processes {P x}x∈[−N+1,N ] and {P x→y}{x,y∈[−N+1,N ]: 0<|x−y|≤R} that appear

before time t. Let ti be the time of the i-th mark, and set t0 = 0 and tm+1 = t. We will

prove the statement by induction in i, 0 ≤ i ≤ m + 1. For time t0 = 0 it is trivial. Now,

suppose the statement holds for ti and take y such that ζA,B,Nti+1
(y) = 1. We must find a path

β connecting A×{0} with (y, ti+1) with the desired properties. There are two possibilities:

1. ζA,B,Nti+1
(y) = ζA,B,Nti

(y). In this case, by induction hypothesis there is γ connecting

A× {0} with (y, ti) satisfying ζA,B,Ns (γ(s)) = 1, 0 ≤ s ≤ ti. Define

β(s) =

{
γ(s) 0 ≤ s < ti,

y ti ≤ s ≤ ti+1.

2. ζA,B,Nti+1
(y) 6= ζA,B,Nti

(y). In this case, there is an integer k ∈ [−R,R] \ {0} such that

ti ∈ P y+k→y and ζA,B,Nti+1
(y) = ζA,B,Nti

(y + k). By induction hypothesis, there is γ
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connecting A × {0} with (y + k, ti) satisfying ζA,B,Ns (γ(s)) = 1, 0 ≤ s ≤ ti, and we

define

β(s) =


γ(s) 0 ≤ s < ti

y + k ti ≤ s < ti+1

y s = ti+1.

In each case above the path β satisfies

ζA,B,Ns (β(s)) = 1, 0 ≤ s ≤ ti+1.

Hence the proof of the lemma is now complete.

1.3 Results on 1-dependent oriented percolation system with

small closure

In the next section we recall the definition of an oriented percolation system introduced

in [16] for the contact process in dimension 1 and range R ≥ 1. This percolation system

is an important tool for our results to the contact process with two types of particles and

priority in dimension 1. Before the definition of this renormalization, we recall some notions

and results of oriented percolation that we will need later .

Consider Λ = {(m,n) ∈ Z × Z+ : m + n is even }, Ω = {0, 1}Λ and F the σ-algebra

generated by the cylinder sets of Ω. Given Ψ ∈ Ω, we say that two points (m, k), (m′, k′) ∈ Λ

with k < k′ are connected by an open path (according to Ψ) [1], if there exists a sequence

{(mi, ni)}0≤i≤k′−k such that

(m0, n0) = (m, k), (mk′−k, nk′−k) = (m′, k′), |mi+1 −mi| = 1, ni = k + i,

with 0 ≤ i ≤ k′ − k − 1 and Ψ(mi, ni) = 1 for all i. If (m, k) and (m′, k′) are connected by

an open path (according to Ψ), we write (m, k) (m′, k′) (according to Ψ).

Now, let A, B and C be subsets of Λ. We say that A× {n} is connected with B × {n′}
inside C, if there are m ∈ A and m′ ∈ B such that (m,n)  (m′, n′) and all the edges of

the path are in C. In this case, we write A× {n} B × {n′} inside C.
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For (y, k) ∈ Λ we denote the cluster beginning in (y, k) as follows

C(y,k) = {(x, n) : such that n ≥ k and (x, n) ∈ Λ and (y, k) (x, n)}.

Let C be a subset of 2Z, we denote the set of point connected at time n as

ΨC
n = {x : exists y ∈ C such that (y, 0) (x, n)}. (1.3.1)

Also, we denote the rightmost particle connected with (−∞, 0] at time n as follows

r̂n = max{y : ∃ m ≤ 0, such that (m, 0) (y, n)}, (1.3.2)

and the rightmost particle connected with a point (x, 0) ∈ Λ by

r̂{x}n = max{y : (x, 0) (y, n)}. (1.3.3)

Given k ≥ 1 and δ > 0, (Ω,F , P̂) is a k-dependent oriented percolation system with

closure below δ, if for all r positive

P̂(Ψ(mi, n) = 0,∀i 0 ≤ i ≤ r|{Ψ(m, s) : (m, s) ∈ Λ, 0 ≤ s < n}) < δr,

with (mi, n) ∈ Λ and |mi −mj | > 2k for all i 6= j and 1 ≤ i, j ≤ r (see [16], [1]).

Let Ψ and Ψ′ be two elements of Ω, we say that Ψ ≤ Ψ′ if Ψ(m,n) ≤ Ψ′(m,n),

∀(m,n) ∈ Λ. Also, we say that a subset A of {0, 1}Λ is increasing if Ψ ∈ A and Ψ ≤ Ψ′,

then Ψ′ ∈ A. Let P̂1 and P̂2 be two measures on F , we say that P̂1 stochastically dominates

P̂2 if P̂1(A) ≥ P̂2(A) for all A increasing in F .

Let P̂p =
∏

Λ(pδ1 + (1 − p)δ0) be the Bernoulli product measure on Λ. The next two

statements are proved in [12] (chapter IV) via the dual-countours methods

lim
p→1

P̂p(|C(2,0)| =∞) = 1, (1.3.4)

and for every β ∈ (0, 1)

lim
p→1

P̂p(∃ n ≥ 1 : r̂n < βn) = 0. (1.3.5)

The next result follows also by the dual-contours methods of Durrett; for details see [6].
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Lemma 1.2. For every t there exist 0 < εt < 1 and 0 < p0 < 1 such that for all p0 < p < 1:

inf
x ∈ [1,M ], x even;

y ∈ [1,M ], y +M2 even

P̂p((x, 0) (y, t) inside [1,M ]) ≥ ε1,

for M large enough and n ∈ [tM2, 2tM2].

The following lemma is a consequence of Theorem 0.0 in [13] and allows us to extend

Lemma 1.2 for the k-dependent percolation system with closure close to 0.

Lemma 1.3. Having fixed k ∈ N and 0 < p < 1, there exists δ > 0 such that if (Ω,F ,P)

is a k-dependent oriented percolation system with closure below δ, then P stochastically

dominates P̂p.

As a consequence of Lemma 1.2, we obtain the next corollary.

Corollary 1.1. For any t > 0 and 0 < ε < 1 there exists a constant c > 0 such that if

on the interval [0,m] both A and C are subsets of 2Z that intersect every interval of length
√
m, then for every 1-dependent oriented percolation closure smaller than ε we have that

P(ΨC
n = 0 on A) ≤ e−c

√
m,

for every n ∈ [tm, 2tm] and sufficiently large m.

Proof. Let xi and yi be a pair of numbers such that xi ∈ C, yi ∈ A and xi, yi ∈ [(i −
1)
√
m, i
√
m) for 1 ≤ i ≤

√
m. Then

P(ΨC
t = 0 on A) ≤ P( ∩

1≤i≤
√
m
{(xi, 0) 9 (yi, t) inside [(i− 1)

√
m, i
√
m)})

≤ ε
√
m

t ,

where the last inequality is a consequence of Lemma 1.3 and Lemma 1.2.

1.4 Mountford-Sweet renormalization

The contact process in dimension 1 and range R = 1 has a characteristic that is very

useful to the study of this process. In this case, infection paths only make jumps of size
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one, therefore two paths cannot cross without intersecting. We refer to this as the paths

crossing property. The contact process in dimension 1 and range R > 1 does not have this

nature. A k-dependent percolation system Ψ with small closure is introduced in [16] and

was used in [16] and [1] to avoid this problem. In Section 2.1, we present another use of

this percolation system. Now we define Ψ.

Let N̂ and K̂ be to positive integers. Given m ∈ Z and n ∈ Z+ such that m+n is even,

we define the following sets

IN̂m =

(
mN̂

2
− N̂

2
,
mN̂

2
+
N̂

2

]
∩ Z,

IN̂,K̂(m,n) = IN̂m × {K̂N̂n},

J N̂,K̂(m,n) =

(
mN̂

2
−R, mN̂

2
+R

)
× [K̂N̂n, K̂N̂(n+ 1)].

We call the set

IN̂,K̂(m,n) ∪ J
N̂,K̂
(m,n) ∪ I

N̂,K̂
(m,n+1)

the renormalized box corresponding to (m,n), or just the box (m,n).

For a realization H of the Harris construction, we construct a map Ψ(H) : Λ → {0, 1}
as follows: we set Ψ(H)(m,n) = 1 if the four conditions below are satisfied

For each interval I ⊂ IN̂m−1 ∪ IN̂m+1 of length
√
N̂ ,

it holds I ∩ ξ1
N̂(n+1)

6= ∅;
(1.4.1)

If x ∈ IN̂m−1 ∪ IN̂m+1 and ξ1
K̂N̂n

× {K̂N̂n} → (x, K̂N̂(n+ 1)),

then (ξ1
K̂N̂n

× {K̂N̂n}) ∩ IN̂,K̂(m,n) → (x, K̂N̂(n+ 1));
(1.4.2)

If x ∈ J N̂,K̂(m,n) and ξ1
K̂N̂n

× {K̂N̂n} → (x, s),

then (ξ1
K̂N̂n

× {K̂N̂n}) ∩ IN̂,K̂(m,n) → (x, s);
(1.4.3)
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{
x ∈ Z : ∃s, t, K̂N̂n ≤ s < t ≤ K̂N̂(n+ 1),

y ∈ IN̂m−1 ∪ IN̂m+1 such that (x, s)→ (y, t)

}

⊂

[
mN̂

2
− 2αK̂N̂,

mN̂

2
+ 2αK̂N̂

]
.

(1.4.4)

Otherwise, we set Ψ(H)(m,n) = 0.

Figure 1.2: Mountford-Sweet renormalized site.

Several remarks are in order. First, equation (1.4.1) implies that there are many sites

on the base of the boxes (m − 1, n) and (m + 1, n) which are connected in the Harris

construction with Z × {0}. Second, equation (1.4.2) yields that if a site at the top of the

box (m,n) is connected in the Harris construction with Z× {0}, then it is connected with

the base of the box (m,n). Third, equation (1.4.3) guarantees that if a site in the rectangle

J N̂,K̂(m,n) is connected with Z × {0}, then it is connected with the base of the box (m,n).

Finally, equation (1.4.4) implies that every path connecting a site in the box (m,n) with
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Z× {0} is inside the rectangle[
mN̂

2
− 2αK̂N̂,

mN̂

2
+ 2αK̂N̂

]
× [K̂N̂n, K̂N̂(n+ 1)].

The above rectangle is called the envelope of the box (m,n).

Additionally, we observe that the constant α in equation (1.4.4) is as in (1.1.9).

The following proposition, which was proved in [16], shows that we can construct Ψ

with sufficiently small closure.

Proposition 1.1. There are k and K̂ with the property that for any δ > 0 there is N̂0 such

that Ψ is a k-dependent percolation system with closure under δ for all N̂ > N̂0.

Throughout this work we fix

* k and K̂ as in Proposition 1.1;

* p0 as in Lemma 1.2;

* δ = δ(k, p0) as in Lemma 1.3;

* N̂0 = N̂0(δ, k, K̂) as in Proposition 1.1.

* N̂ > N̂0.

Under the above conditions, we have that Ψ is a k-dependent percolation system with

closure under δ and with law stochastically larger than P̂p0 .

1.5 Bezuidenhout-Grimmett renormalization

We dedicate this section to recall the Bezuidenhout-Grimmett renormalization intro-

duced in [3]. In Chapter 3, we present an extension of the Mountford-Sweet renormaliza-

tion for the layer [−L,L] × Z, for L fixed but arbitrary. For this extension we need the

construction presented in [3] for d = 2. The idea presented in [3] is, roughly speaking, the

construction of a renormalization in which a renormalized space-time block will be open if

there exists a seed (finite region fully occupied) on the first level of the block connected

inside the block to a translation of this seed in the last level of the block.
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The next proposition is a very similar version of Lemma (19) in [3]. The main difference

is that the version we present considers the seed as a rectangle with the same width than

the layer. In the future, this specific detail helps to create “barriers” for the contact process

in the layer. The concept of barriers is introduced in Section 3.2, intuitively the barriers

stop the pass of particles of type 1 in the region favorable to type 2 and vice versa.

Let ξ[−L,L]×Z(t) be the contact process restricted to the layer [−L,L]×Z. We will work

with the supercritical case in the layer. That is, we consider the infection parameter λ

larger than λL, where

λL = inf{λ : Pλ(ξ0
[−L,L]×Z(t) 6= ∅ ∀t) > 0}. (1.5.1)

Proposition 1.2. Let λ > λL. Given δ > 0, there exist integers r, K and T such that

Pλ

 ∃ y′ ∈ [9K, 13K] and s ∈ [22T, 24T ] such

that ([−L,L]× ([−r, r] + y)× {t} → (z, s)

∀z ∈ (0, y′) + [−L,L]× [−r, r] inside the region R+

 > 1− δ (1.5.2)

for all y ∈ [−2K, 2K] and t ∈ [0, 2T ], where R+ is defined as follows

R+ =

{
(x, y, t) : x ∈ [−L,L], t ∈ [0, 24T ], y ∈

[
−5K +

Kt

2T
, 5K +

Kt

2T

]}
. (1.5.3)

In order to define the 1-dependent percolation system, which is the main question of

this section, we need more notation: denote R− the reflection with respect to the axis t of

R+ and for (m,n) ∈ Λ, denote R±m,n = R± + (0,m11K, 22nT ). We also set

R = ∪
(m,n)∈Λ

(R+
m,n ∪R−m,n).

For r, K, and T as in Proposition (1.2) we define a percolation system Φ ∈ {0, 1}Λ as

follows: we set Φ(0, 0) = 1, for n > 0 we set Φ(m,n) = 1 if the following two restrictions

are satisfied:

i) There exist y ∈ [−2K+11mK, 2K+m11K] and s ∈ [22Tn, 24Tn], such that [−L,L]×
[−r + y, r + y]× {s} is fully occupied;
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t

y

24T

−5K

2T

5K

R+

11K

Figure 1.3: Representation of the event inside the probability in (1.5.2).

ii)

∃ (x′, y′) ∈ [−L,L]× ([−9K + 11mK,−13K + 11mK] ∪ [9K + 11mK, 13K + 11mK])

and s ∈ [22T + 22nT, 24T + 22nT ] such that, [−L,L]× [−r + y, r + y]

×{s} → (z, s) inside R+
m,n ∪R−m,n∀z ∈ [−L,L]× [−r + y′, r + y′],

we set Φ(m,n) = 0 otherwise. Restriction (ii) above says that there exists a translation

of [−L,L] × [−r + y, r + y] × {s} in the top of R+
m,n ∪ R−m,n such that every point in this

translation is connected inside R to [−L,L]× [−r + y, r + y]× {s}.
By Proposition 1.2 we have that Φ is a 1-dependent oriented percolation system with

closure under δ.
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Chapter 2

Metastability for the

one-dimensional contact process

with two types of particles and

priority

During this chapter we are dealing with the supercritical contact process in dimension

1 with range R ≥ 1. We study the metastability phenomenon for the contact process with

two types of particles and priority. The first result on this matter is the convergence of τ1,2N ,

properly rescaled, to an exponential distribution (recall the definition of τ1,2N in Section 1.2).

More precisely, we prove that

Theorem 2.1. For d = 1 and R > 1, let βN be such that P(τ1,2
N ≥ βN ) = e−1, then

lim
N→∞

τ1,2
N

βN
= E in distribution,

where E has exponential distribution with rate 1.

An important tool to obtain Theorem 2.1 is the concept of barriers introduced in Section

2.1. We will say that a point (x, 0) in Z×R+ is a barrier in [1, N ]× {0} if every open site

in the interval at a fixed time, polynomial on N , is connected in the Harris graph to (x, 0).

Using Mountford-Sweet renormalization we state that with positive probability a point in

18



[1, N ] × {0} is a barrier. Another ingredient for the proof of Theorem 2.1 is the property

of regeneration of the contact process with range R > 1. This property is introduced in

[14] in a more difficult situation, the contact process in Zd. In this paper is proved that

the property of regeneration together with the attractiveness of the contact process implies

that the normalized time of extinction in a box converge to an exponential distribution.

In Section 2.3.1 we put together the regeneration for the contact process and the concept

of barriers to obtain regeneration for the contact process with two types of particles and

priority. Once we have regeneration for the process we are interested, Theorem 2.1 follows

easy, although a little different than for the contact process, because in our case we do not

have the property of attractiveness.

The other important result of this chapter is the following

Theorem 2.2. For d = 1 and R > 1, there exists a constant γ > 0 depending only on the

rate of infection λ and the range R such that

lim
N→∞

1

N
log τ1,2

N = γ in probability .

In Section 2.2 we also discuss the fact that the time of extinction for the contact process

in the interval [1, N ] is logarithm equivalent to eγN , with γ as in Theorem 2.2. Theorem

2.2 implies that the time when one of the families became extinct in an interval of length

2N is logarithmically equivalent to eγN . Then after τ1,2N the surviving family is alive in an

interval of length 2N for an exponential time.

2.1 Barriers in finite volume

In this section, we introduce an object that we call N -barrier. To motivate the construc-

tion of this object, we observe the following property of the contact process with R = 1:

Fix x in [1, N ], D > 0 and t ∈ [DN2, 2DN2]. Observe that by the path crossing property,

in the event

{(x, 0)→ (1, t) inside [1, N ]; (x, 0)→ (N, t) inside [1, N ]},
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we have that ξxN (t) = (ξ1(t) ∩ [1, N ]). Corollary 1 in [16] establishes that for any D > 0,

there is a constant δ such that

P((z, 0)→ (y, t) inside [1, N ]) ≥ δ,

given any z, y ∈ [1, N ], t ∈ [DN2, 2DN2] and sufficiently large N . By the FKG-inequality

we have

P((x, 0)→ (1, t) inside [1, N ]; (x, 0)→ (N, t) inside [1, N ]) ≥ δ2,

which implies that there exists η̂ = δ2 such that

inf
x∈[1,N ]

P(ξxN (t) = (ξ1(t) ∩ [1, N ])) > η̂ > 0. (2.1.1)

The strong use of the path crossing property to obtain (2.1.1) restricts this argument for

the case R = 1. We want to extend (2.1.1), or a similar equation, for the contact process

with range R > 1. To this aim, we introduce the definition of an N -barrier, which is similar

to the notion called descendancy barrier introduced in [1]. The main difference between

these two concepts is that the N -barrier is defined in an interval with length depending on

N , while the descendancy barrier is defined in the whole line. In this section, we establish

some properties of N -barriers and follows closely Section 2.2 of [1].

Let us denote M = M(N) = b2(N−2αK̂N̂)

N̂
c, this is the largest m such that the envelope

of (m, 0) is a subset of [1, N ] × [0,∞) and we set S = S(N) = K̂N̂M2 + 2. Now, we are

ready to introduce the definition of an N -barrier.

Definition 2.1. (a) For x ∈ [1, N ] we say (x, 0) is an N -barrier if for all y ∈ [1, N ] such

that Z× {0} → (y, S) then (x, 0)→ (y, S) inside [1, N ].

(b) For x ∈ [−N + 1, 0] we say (x, 0) is an N -barrier if for all y ∈ [−N + 1, 0] such that

Z× {0} → (y, S) then (x, 0)→ (y, S) inside [−N + 1, 0].

(c) For x ∈ [−N+1, N ] we say that a point (x, t) is an N -barrier if (x, 0) is an N -barrier

in Θ(0,t)(H).

We need to introduce some notation that will be used in the next result. Consider the

following partition of the interval [1, N ]

[1, N ] = A1 ∪A2 ∪A3,
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where

A1 =

[
1,
ıN̂

2
− N̂

2

)
, A2 =

[
ıN̂

2
− N̂

2
,
MN̂

2
+
N̂

2

]
,

A3 =

(
MN̂

2
+
N̂

2
, N

]
,

(2.1.2)

and

ı = ı(N) =

{
b4αK̂N̂c if M2 + b4αK̂N̂c is even,

b4αK̂N̂c+ 1 if M2 + b4αK̂N̂c is odd.
(2.1.3)

Let x ∈ A2, in the next result we prove that in the intersection of the following 5 events,

Ei i = 1, . . . , 5, (x, 0) is an N -barrier. Take j such that x ∈ IN̂j , we define

E1= If y and z in IN̂j−1∪IN̂j ∪IN̂j+1, y 6= z and (y, 0)→ (z, t) with t ≤ 1, then (x, 0)→ (z, t);

E2= {P {x} ∩ [0, 1] = ∅};

E3= {∀z ∈ IN̂j−1 ∪ IN̂j ∪ IN̂j+1, (x, 0)→ (z, 1)};

E4= {Ψ(Θ(0,1)(H)) ∈ ΓM (j)}.

E5= ⋂
x,y∈A1∪A3

{P x→y ∩ (S − 1, S] = ∅; P y→x ∩ (S − 1, S] = ∅; P x ∩ (S − 1, S] 6= ∅};

where ΓM is defined as follows

ΓM (j) =
{

(j, 0) (ı,M2) and (j, 0) (M,M2) inside Λ ∩ ([ı,M ]× [0,M2])
}
.

Figure 2.1 can help you to visualize the event ∩5
i=1Ei. The following proposition states

that for N large enough the probability of a (centrally located) point (x, 0) to be an N -

barrier is uniformly bounded away from zero.

Proposition 2.1. There exists η̂ = η̂(λ) > 0 such that for all N large enough

Px((x, 0) is an N -barrier) > η̂, (2.1.4)

for any x ∈
[
−MN̂

2 − N̂
2 ,
−ıN̂

2 + N̂
2

]
∪
[
ıN̂
2 −

N̂
2 ,

MN̂
2 + N̂

2

]
.
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A1 A2 A3S

(ı,M2)

BM

(M,M2)

(x, 0)

Figure 2.1: Event E1∩E2∩E3 guarantees that every point in IN̂j−1∪IN̂j ∪IN̂j+1 is connected
with (x, 0). Event E4 implies that there are two renormalized paths connecting the box
(j, 0) with the boxes (ı,M2) and (M,M2). These renormalized paths are represented in
the figure with the connected structure BM (in red). Finally, the event E5 ensures that
there are no particles in the regions A1 × [S − 1, S] and A3 × [S − 1, S] and this event is
represented in the figure with two gray rectangles at the top.
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Proof. Observe that for N large enough 3
2N̂
N ≤ M ≤ 2

N̂
N and K̂ 9

4N̂
N2 ≤ S ≤ K̂ 4

N̂
N2.

Then for D = K̂ 9
4N̂

, DN2 ≤ S ≤ 2DN2 and (2.1.4) we have (2.1).

We now give a proof that works for all values of R. We concentrate in the case x ∈ A2.

For a configuration in E4 there exist sequences {mk}0≤k≤M2 and {m̂k}0≤k≤M2 , subsets of

{ı, . . . ,M}, such that

m0 = m̂0 = j, mM2 = ı, m̂M2 = M,

and

Ψ(Θ(0,1)(H))(mk, k) = 1 and |mk+1 −mk| = 1 ∀ k ∈ {0, . . . ,M2},
Ψ(Θ(0,1)(H))(m̂k, k) = 1 and |m̂k+1 − m̂k| = 1 ∀ k ∈ {0, . . . ,M2}.

Denote

BM =
⋃

0≤k≤M2

IK̂,N̂(mk,k) ∪ J
K̂,N̂
(mk,k) ∪ I

K̂,N̂
(m̂k,k) ∪ J

K̂,N̂
(m̂k,k).

From items (1.4.2) and (1.4.3) in the definition of Mountford-Sweet renormalization it

follows that in the trajectory of the contact process t 7→ ξ(t)(Θ(0,1)(H)) every occupied site

in BM descends from IK̂,N̂(j,0) . By our choice of N and ı, we have that

[
mkN̂

2
− 2αK̂N̂,

mkN̂

2
+ 2αK̂N̂

]
⊂ [1, N ] for all k.

Therefore, the envelopes of the renormalized sites (mk, k) and (m̂k, k) are subsets of [1, N ]×
[0,∞) for all k. Using (1.4.4) of the Mountford-Sweet renormalization, we have that every

occupied site in BM is connected to IK̂,N̂(j,0) by a path entirely contained in [1, N ]× [0,∞).

BM is a connected union of M2 segments of length N̂ with rectangles of width 2R and

height K̂N̂ . In Θ(0,1)(H), at time K̂N̂M2 = S−2 every occupied site in A2 is connected to

Z×{0} by a path that intersects the structure BM and remains in [1, N ]×[0,∞) afterwards.

Since every point in BM is connected with IK̂,N̂(j,0) inside [1, N ], we also can connect every

point in A2 × {S − 2} with IK̂,N̂(j,0) inside [1, N ]× [0,∞), in the construction Θ(0,1)(H).

The intersection of the events E1, E2 and E3 implies that every point in IN̂j × {1} is

connected with (x, 0), in H. Since IN̂j ×{1} is the basis of IK̂,N̂(j,0) , we have that for all y ∈ A2

such that Z× {0} → (y, S − 1), (x, 0)→ (y, S − 1) inside [1, N ].
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Finally, for any realization in E5 there is no mark of death in the regions A1× [S−1, S]

and A3× [S−1, S], and also there is no infection mark going out or coming in these regions.

In particular, for any initial configuration at time S there is no particle alive in A1 ∪ A3,

and during the interval of time [S − 1, S] there is no interaction with any exterior regions.

Therefore, every occupied site at time S is connected with A2 × {S − 1} inside A2. Then

we can conclude that every occupied site in [1, N ] at time S is connected with (x, 0) inside

[1, N ] and this is the definition of N -barrier.

Now we proceed to prove that the probability of ∩5
i=1Ei is positive. It is trivial that

we can take p̃ > 0 independent of N so that P (Ei) ≥ p̃ for i = 1, 2, 3. Since the event

Ψ(Θ(0,1)(H)) ∈ ΓM (j) depends on the Harris construction restricted to Z× [1, S − 1), it is

independent of all the marks in Z×[0, 1). Let us prove that the event Ψ(Θ(0,1)(H)) ∈ ΓM (j)

has positive probability.

Using the FKG-inequality and Lemma 1.2 we have that for all M large enough

P̂p0((j, 0) (ı,M2) and (j, 0) (M − 1,M2) inside [ı,M ]) > ε1
2.

By our selection of Ψ, the law of Ψ is stochastically larger than P̂p0 , then

P(Ψ(Θ(0,1)(H)) ∈ ΓM (j)) > ε21.

On the other hand, the event E5 depends on marks in the region Z× [S − 1, S]. Note that

this event has probability

P(E5) =

(
1− e−(Rλ+1)

Rλ+ 1

) ıN̂
2
− N̂

2
(

1− e−(Rλ+1)

Rλ+ 1

)N−MN̂
2
− N̂

2

. (2.1.5)

Therefore, since N − MN̂
2 −

N̂
2 ≤ 2αK̂N̂ − N̂

2 , we conclude that P(E5) has a positive lower

bound, say β, that does not depend on N . Thus, by the Markov property, (2.1.4) holds for

η̂ = p̃ε21β.

Finally, for x ∈
[
−MN̂

2 − N̂
2 ,
−ıN̂

2 + N̂
2

]
the proof is analogous by the symmetry of Harris

graph.
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2.2 Regeneration for the contact process

This section deals with the “regeneration” property of the contact process with range

R ≥ 1 restricted to the interval [1, N ] for large N . For any initial configuration, in a set

of probability close to one, if the process survives until a certain time aN then the infected

sites are the same as if the process had started with full occupancy. In addition, aN is

negligeable compared with the extinction time. The notion of regeneration was introduced

in [14] for the contact process in dimension d ≥ 2.

Proposition 2.2. There exist sequences aN and bN that satisfy

(i) lim
N→∞

inf
ξ0∈{0,1}[1,N ]

P(ξ1
N (aN ) = ξξ0N (aN ) or TN < aN ) = 1,

(ii) bN
aN
→∞,

(iii) lim
N→∞

P(T 1
N < bN ) = 0.

Remark 2.1. In the sequel we take aN = (K̂N̂M2 + 3)N and bN = e
γ
2
N .

We restrict the proof of this proposition to the case R > 1. For the nearest neighbour

contact process the idea is the same just replacing the use of the object N -barrier by the

property mentioned in (2.1.1).

Proof of Proposition 2.2. We start by proving item (i). Fix N large enough as in Propo-

sition 2.1 and remember the definition of M = M(N), S = S(N) before Definition 2.1,

ı = ı(N) in (2.1.3) and the interval A2 in (2.1.2). For i ∈ N, we define

Bi = {∃ x ∈ A2 : ξξ0N (si−1 + 1)(x) = 1 and (x, si−1 + 1) is N -barrier},

where si = (S + 1)i and s0 = 0. Observe that by the Markov property

P(∃ x ∈ A2 such that ξξ0N (si−1 + 1)(x) = 1|T ξ0N > si−1) ≥ min
y∈[1,N ]

P((y, 0)→ A2 × {1}).

By the definition of A2 and ı, the left extreme of the interval A2 is at most (b4αK̂N̂c +

1)N̂/2− N̂/2 implies that we can choose η̃ > 0 that does not depend on N such that

min
y∈[1,N ]

P((y, 0)→ A2 × {1}) ≥ η̃.
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Using Markov property and Proposition 2.1 we obtain

P(Bi|T ξ0N > si−1) ≥ η̂η̃.

Note that Bi involves information between the times si−1 + 1 and si. Hence, setting aN =

(S + 1)N by the Markov property we have

P( ∩
i≤N

Bc
i ∩ {T

ξ0
N > aN}) ≤ (1− η̂η̃)N . (2.2.1)

Item (i) will follow by (2.2.1) and the following inclusion⋃
i≤N

Bi ∪ {T ξ0N ≤ aN} ⊂ {ξ
1
N (aN ) = ξξ0N (aN )} ∪ {T ξ0N ≤ aN}.

To obtain this inclusion is enough to prove⋃
i≤N

Bi ∩ {T ξ0N > aN} ⊂ {ξ1N (aN ) = ξξ0N (aN )}. (2.2.2)

Fix a realization in the left member of (2.2.2) and take i such that ξξ0N (x) = 1 and (x, si−1+1)

is an N -barrier, then we have by the definition of N -barrier

∀ y ∈ [1, N ] such that Z×{si−1 +1} → (y, si) then (x, si−1 +1)→ (y, si) inside [1, N ],

which establishes (2.2.2).

For the item (iii) we use the next result: there exists γ ∈ (0,∞) such that

lim
N→∞

1

N
log T 1

N = γ in probability. (2.2.3)

We discuss this result in the following remark. By (2.2.3) we can take bN = e
γ
2
N for item

(iii). Item (ii) is immediate from the selection of aN and bN .

Remark 2.2. For the nearest neighbor scenario it was shown in [8] that for any ε > 0

lim
N→∞

P
(

1

N
log T 1

N > γ + ε

)
= 0, (2.2.4)
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and in [9] it was proved the other bound

lim
N→∞

P
(

1

N
log T 1

N < γ − ε
)

= 0. (2.2.5)

These results imply (2.2.3) for R = 1. Both statements use the fact that there exists ĉ > 0

such that for all t ≥ 0

P(t < T [1,N ] <∞) ≤ e−tĉ, (2.2.6)

proved in [7]. Formula (2.2.6) is obtained by the Peierls contour argument. When R > 1,

we can still use the same argument to obtain (2.2.6) except that the renormalization used in

the previous case is replaced by the Mountford-Sweet renormalization. All the other steps

in the proof of (2.2.4) and (2.2.5) for the case nearest neighbor are also valid when R > 1.

Having proven the regeneration property, we get, just as in Proposition 1.2 of [14], the

following extension of the asymptotic exponentiality, valid for the case R > 1.

Corollary 2.1.

lim
N→∞

T 1
N

E(T 1
N )

= E in distribution,

where E has exponential distribution with rate 1.

2.3 Metastability for the contact process with two types of

particles and priority

In this section, we prove Theorem 2.1. We start by proving a proposition which estab-

lishes that if the time of the first extinction is larger than a2N (aN as in Proposition 2.2),

then there exists a time smaller than a2N such that at least one particle of type 2 is in

[1, N ], the region in which the particles 2 have priority.

Given ζ0 ∈ {0, 1, 2}Z, k ≥ 1 and N , define the following stopping times

Sζ0k = inf{t > (k − 1)a2N : ∃ y ∈ [1, N ], ζζ0,Nt (y) = 2}

and

Ŝζ0k = inf{t > (k − 1)a2N : ∃ x ∈ [−N + 1, 0], ζζ0,Nt (x) = 1}.
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Note that, by the symmetry in Harris construction, Ŝζ0k and Sζ0k have the same distribution.

Hence, we state the following result for Sζ0k , but it is also valid for Ŝζ0k .

Proposition 2.3. Let C = {ζ0 ∈ {0, 1, 2}[−N+1,N ] : ∃ x, y ζ0(x) = 1, ζ0(y) = 2}. Then

there exists c, 0 < c < 1, such that

sup
ζ0∈C

P(τ ζ0N > Na2N ; ∃ k 1 ≤ k ≤ N : Sζ0k > ka2N ) ≤ Nc2N , (2.3.1)

for all N large enough.

Proof of Proposition 2.3. By the Markov property for k ≥ 2 we have that

P(τ ζ0N > Na2N ;Sζ0k > ka2N ) ≤
∑
ζ̂∈C

P(τ ζ̂N > a2N ;S ζ̂1 > a2N )P(ζζ0,N(k−1)a2N
= ζ̂)

≤ sup
ζ0∈C

P(τ ζ0N > a2N , S
ζ0
1 > a2N ).

Thus, to obtain (2.3.1) it is enough to prove

sup
ζ0∈C

P(τ ζ0N > a2N ;Sζ01 > a2N ) ≤ c2N , (2.3.2)

for some c, 0 < c < 1.

Only during this proposition we abuse notation and denote ξ2N by the contact process

restricted to the interval [−N + 1, N ]. By the translation invariance in the law of Harris

construction, both processes have the same distribution.

Take ζ0 ∈ C and set B = B(ζ0) = {x : ζ0(x) = 1}. We claim that

{τ ζ0N > a2N ;Sζ01 > a2N ; ξB2N (a2N ) = ξ12N (a2N )} = ∅. (2.3.3)

This claim implies that

{τ ζ0N > a2N ;Sζ01 > a2N} ⊂ {TB2N > a2N ; ξB2N (a2N ) 6= ξ12N (a2N )}, (2.3.4)

and hence (2.3.2) is a consequence of formulas (2.2.1) and (2.2.2).

To prove (2.3.3), it is enough to show that every realization in {Sζ01 > a2N ; ξB2N (a2N ) =

ξ12N (a2N )} is in {τ ζ0N ≤ a2N}. Take x ∈ ξ12N (a2N ) and let γ be a path connecting B × {0}
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with (x, a2N ). For γ we define s∗ by

s∗ = inf{t : 0 < t ≤ a2N , ζ
ζ0
2N (t)(γ(t)) = 2},

with the usual convention that inf{∅} =∞.

Suppose that s∗ < ∞. Since Sζ01 > a2N and ζζ0,2Ns∗ (γ(s∗)) = 2, we conclude that

γ(s∗) ∈ [−N + 1, 0]. However, by the definition of s∗, ζζ0,2Nt (γ(t)) = 1 for all t < s∗, which

implies that γ restricted to [0, s∗] is a path of particles 1 that infects the site γ(s∗) at time

s∗. Since the particles of type 1 have priority in [−N + 1, 0], we get ζζ0,2Ns∗ (γ(s∗)) = 1.

This is a contradiction and we conclude that s∗ =∞, which means ζζ0,2Nt (γ(t)) = 1 for all

0 ≤ t ≤ a2N . Therefore, ζζ0,2Na2N (x) = 1 for all x ∈ ξ12N (a2N ).

2.3.1 Regeneration for the contact process with two types of particles

and priority

We are ready to state the regeneration phenomenon for the process {ζ1,2,Nt }. The main

idea is to prove that if the two families of particles survive for a suitable time (polynomial

in N), outside an event with exponentially small probability we can find two barriers one

in [−N + 1, 0] and the other in [1, N ], each of them infected by the type of particle that has

priority in the respective region. Basically, we combine the idea of the proof of Proposition

2.2 with the result in Proposition 2.3 to obtain the following:

Proposition 2.4. There are sequences cN and dN that satisfy

(i) lim
N→∞

inf
ζ0∈C

P(ζ1,2,N
cN = ζζ0,NcN or τ ζ0N < cN ) = 1;

(ii) dN
cN
→∞;

iii) lim
N→∞

P(τ1,2
N < dN ) = 0,

where C has been defined in Proposition 2.3.

Proof. Observe that τ1,2N is stochastically larger than the minimum of two independent

variables with the same law as T 1
N . Hence, taking dN as bN of Proposition 2.2, item (iii) is

immediate.

29



For the proof of item (i), we take N large enough as in Proposition 2.1 and remember

the definitions of M = M(N), S = S(N) before Definition 2.1, ı = ı(N) in (2.1.3) and the

interval A2 in (2.1.2). We also denote A4 =
[
−MN̂

2 − N̂
2 ,
−ıN̂

2 + N̂
2

]
. For k ∈ {1, . . . , N}, let

sk = k2Na2N ,

Λζ0N,k =

{
∃ yk ∈ A2, zk ∈ A4 : ζζ0,Nsk (yk) = 2, ζζ0,Nsk (zk) = 1,

and (yk, sk), (zk, sk), are N -barriers

}

and

ΛN,k =

{
∃ ŷk ∈ A2, ẑk ∈ A4 : ζ1,2,Nsk (ŷk) = 2, ζ1,2,Nsk (ẑk) = 1,

and (ŷk, sk), (ẑk, sk) are N -barriers

}
.

To obtain item (i), we prove the following inclusion

{τ ζ0N > 2N2a2N ; τ1,2N > 2N2a2N} ∩
N⋃
k=1

Λζ0N,k ∩ ΛN,k ⊂

{τ ζ0N > 2N2a2N ; τ1,2N > 2N2a2N ; ζζ0,N
2N2a2N

= ζ1,2,N
2N2a2N

}.

(2.3.5)

Fix a realization in {τ ζ0N > 2N2a2N ; τ1,2N > 2N2a2N} ∩ Λζ0N,k ∩ ΛN,k. By the definition of

N -barrier, the points (yk, sk), (ŷk, sk), (zk, sk) and (ẑk, sk) satisfy:

If y ∈ [1, N ] and Z× {sk} → (y, sk + S), then (yk, sk)→ (y, sk + S) inside [1, N ] and

(ŷk, sk)→ (y, sk + S) inside [1, N ].

If z ∈ [−N + 1, 0] and Z×{sk} → (z, sk +S), then (zk, sk)→ (z, sk +S) inside [1, N ]

and (ẑk, sk)→ (z, sk + S) inside [−N + 1, 0].

From the argument above for this realization, we conclude that

ζζ0,Nsk+S = ζ1,2,Nsk+S = 2ξ1[−N+1,N ](sk + S) in [1, N ]

and

ζζ0,Nsk+S = ζ1,2,Nsk+S = ξ1[−N+1,N ](sk + S) in [−N + 1, 0],

consequently ζζ0,N
2N2a2N

= ζ1,2,N
2N2a2N

, which proves (2.3.5).

To finish the proof of item (i) we choose cN = 2N2a2N and show that there exists

0 < ν < 1 such that
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P

(
{τ ζ0N > 2N2a2N ; τ1,2N > 2N2a2N} ∩

N⋂
k=1

(Λζ0N,k ∩ ΛN,k)c

)
≤ νN (2.3.6)

for all ζ0 ∈ C. Observe that

P

(
{τ ζ0N > 2N2a2N ; τ1,2N > 2N2a2N} ∩

N⋂
k=1

(Λζ0N,k ∩ ΛN,k)c

)
≤

4sup
ζ0∈C

P

(
{τ ζ0N > 2N2a2N} ∩

N⋂
k=1

{
∀y ∈ A2 ζ

ζ0,N
sk

(y) 6= 2 or (y, sk)

is not an N -barrier

})
,

(2.3.7)

which easily follows after opening the complement in the event on the left member and

using the symmetry of the Harris construction. Now, by Proposition 2.3 we have

sup
ζ0∈C

P

(
{τ ζ0N > 2N2a2N} ∩

N⋂
k=1

{
∀y ∈ A2 ζ

ζ0,N
sk

(y) 6= 2 or (y, sk)

is not an N -barrier

})
≤ N

2
cN+

sup
ζ0∈C

P

(
{τ ζ0N > 2N2a2N} ∩

N⋂
k=1

{
Sζ02kN−1 ≤ sk − a2N ∀y ∈ A2 ζ

ζ0,N
sk

(y) 6= 2

or ζζ0,Nsk
(y) = 2 and (y, sk) is not an N -barrier

})
.

(2.3.8)

Then, it is enough to prove that the last term in the inequality above is exponentially small

in N . To show this, we first observe that the last term in (2.3.8) is smaller than

sup
ζ0∈C

P

(
{τ ζ0N > 2N2a2N} ∩

N⋂
k=1

{
Sζ02kN−1 ≤ sk − a2N ; ∀y ∈ A2 ζ

ζ0,N
sk

(y) 6= 2
})

+ sup
ζ0∈C

P

(
{τ ζ0N > 2N2a2N} ∩

N⋂
k=1

{
∃ y ∈ A2 ζ

ζ0,N
sk

(y) = 2 but

(y, sk) is not an N -barrier

})
.

(2.3.9)

Thus, we need only to obtain upper bounds for the members on the right side of (2.3.9).

Let us start by the first term. Define

Dk = {x : ζζ0,N
S
ζ0
2kN−1

(x) = 2} ∩ [1, N ]

and the event

Ck = {{Dk} × {Sζ02kN−1}9 A2 × {Sζ02kN−1 + 2a2N} inside [1, N ]}.
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By the priority of particles of type 2 in [1, N ] we have that

{τ ζ0N > 2N2a2N} ∩
N⋂
k=1

{
Sζ02kN−1 ≤ sk − a2N ; ∀y ∈ A2 ζ

ζ0,N
sk

(y) 6= 2
}

⊂ {τ ζ0N > 2N2a2N} ∩
N⋂
k=1

{Sζ02kN−1 ≤ sk − a2N ;Ck}.

In the following claim we prove that the conditional probabilities of the events Ck given

Sζ2kN−1 < sk − a2N are smaller than a positive number β.

Claim 2.1. There exists β > 0 such that for all N large enough

P(Cck|S
ζ0
2kN−1 < sk − a2N ) > β.

Proof of Claim 2.1. Fix ξ0 ∈ {0, 1}[1,N ] and ξ0 6= ∅, then we have

P(ξξ0N (2a2N ) ∩A2 6= ∅) = P(T ξ0N > 2a2N ; ξξ0N (2a2N ) ∩A2 6= ∅)

= P(T ξ0N > 2a2N )− P(T ξ0N > 2a2N ; ξξ0N (2a2N ) ∩A2 = ∅).
(2.3.10)

Using a Peirels contour argument for the k-dependent system with small closure Ψ defined

in Section 2.1, it is possible to prove that there exist β > 0 and a sequence fN linear in N

such that

inf
x∈[1,N ]

P(T xN ≥ efN ) > 2β,

for N large enough. Since a2N is of order N3, the formula above implies that

P(T ξ0N > 2a2N ) ≥ 2β. (2.3.11)

Now, we prove that the last term in (2.3.10) goes to zero when N goes to infinity. Formulas

(2.2.1) and (2.2.2) imply that there exists 0 < c < 1 such that

P(T ξ0N > 2a2N ; ξξ0N (2a2N ) ∩A2 = ∅) ≤ cN + P(ξ1,N2a2N
∩A2 = ∅). (2.3.12)

By the duality of the contact process we have

P(ξ1N (2a2N ) ∩A2 6= ∅) = P(ξA2
N (2a2N ) 6= ∅).

32



Observe that the length of A2 is at least lN = N − 2αK̂N̂ −
⌊
4αK̂N̂

⌋
− 1, then, we obtain

P(ξ1N (2a2N ) ∩A2 = ∅) = P(ξA2
N (2a2N ) = ∅) ≤ P(ξ1lN (2a2N ) = ∅).

From item (iii) of Proposition 2.2 and the fact that lN is linear in N , it follows that

lim
N→∞

P(ξ1lN (2a2N ) = ∅) = lim
N→∞

P(T 1
lN
≤ 2aN ) = 0.

Thus, for N large enough we have

P(T ξ0N > 2a2N ; ξξ0N (2a2N ) ∩A2 = ∅) ≤ β.

By (2.3.11) and (2.3.12) we obtain

P(ξξ0N (2a2N ) ∩A2 6= ∅) ≥ β,

for all ξ0 ∈ {0, 1}[1,N ], ξ0 6= ∅. By the Strong Markov property, we have the desired bound.

Now we return to the first term in (2.3.9). Since Sζ02kN−1 is larger than 2(kN − 2)a2N ,

given the information until this time, the event {Sζ02kN−1 ≤ sk − a2N ;Ck} involves informa-

tion between the times (2kN − 2)a2N and (2(k + 1)N − 2)a2N . Therefore, by the Strong

Markov property and Claim 2.1 we conclude that

P({τ ζ0N > 2N2a2N} ∩
N⋂
k=1

{Sζ02kN−1 ≤ sk − a2N} ∩ Ck) ≤ βN (2.3.13)

for every ζ ∈ C.
We now analyze the second term in the right member of (2.3.9). From the fact that S

is of order N2 and a2N is of order N3, we get that for N large enough

sk − 2a2N = (2kN − 2)a2N ≤ sk + S ≤ (2(k + 1)N − 2)a2N = sk+1 − a2N .

From these calculations, we have that the k-th event in the intersection inside the probability

involves information in the interval of time [sk − a2N , sk+1 − a2N ]. Hence, the Markov
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property and Proposition 2.1 imply that this probability is less than (1 − η̂)N . Thus,

putting together this last comment with (2.3.7), (2.3.8), (2.3.9), (2.3.13) and selecting N

large enough such that

4

(
N

2
cN + βN + (1− η̂)N

)
≤ (2 max{c, β, 1− η̂})N ,

we obtain (2.3.6) for ν = 2 max{c, β, 1 − η̂}. Item (ii) is immediate from the selection of

cN and dN .

In the rest of this chapter cN = 2N2a2N . From (2.3.5) and (2.3.6) we obtain a stronger

result than item (i) of Proposition 2.4: there exists ν, 0 < ν < 1 such that for N large

enough

sup
ζ0∈C

P(ζ1,2,NcN
6= ζζ0,NcN

; τ ζ0N ≥ cN ) ≤ νN . (2.3.14)

Proof of Theorem 2.1. Let βN as in the statement of Theorem 1. We will prove that

lim
N→∞

∣∣∣P(τ1,2N > βN (t+ s))− P(τ1,2N > βN t)P(τ1,2N > βNs)
∣∣∣ = 0, (2.3.15)

which by the definition of βN will imply

lim
N→∞

P(τ1,2N ≥ βN t) = e−t.

To obtain the limit (2.3.15), we prove that there exist two positive sequences hN and

h′N , both converging to zero when N goes to infinity, such that

P(τ1,2N > βN t)P(τ1,2N > βNs)− hN ≤ P(τ1,2N > βN (t+ s)) (2.3.16)

and

P(τ1,2N > βN (t+ s)) ≤ P(τ1,2N > βN t)P(τ1,2N > βNs) + h′N . (2.3.17)

We begin by proving equation (2.3.16). First, we observe that for all t, s positives we have

that

{τ1,2N > βNs; τ
1,2,βNs
N > βN t; ζ

1,2,N
βNs

= ζ1,2,NβNs−cN ,cN ; ζ1,2,NβNs−cN ,2cN = ζ1,2,NβNs,cN
}

⊂ {τ1,2N > βN (t+ s)},
(2.3.18)
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βN (t + s)

βNs

βNs− cN

βNs + cN

Figure 2.2: A graphic representation of the inclusion (2.3.18). Blue paths represent paths
of particles 1 and red paths represent particles of type 2.

where ζ1,2,Nt,· and τ1,2,tN refer to the two-type contact process defined in Θ(0,t)(H). By

formula (2.3.18), we obtain that

P(τ1,2N > βNs; τ
1,2,βNs
N > βN t; ζ

1,2,N
βNs

= ζ1,2,NβNs−cN ,cN ; ζ1,2,NβNs−cN ,2cN = ζ1,2,NβNs,cN
)

≤ P(τ1,2N > βN (t+ s)).
(2.3.19)

Now, we choose hN as

hN = P(τ1,2N > βNs)P(τ1,2N > βN t)

− P(τ1,2N > βNs; τ
1,2,βNs
N > βN t; ζ

1,2,N
βNs

= ζ1,2,NβNs−cN ,cN ; ζ1,2,NβNs−cN ,2cN = ζ1,2,NβNs,cN
).

Also, we observe that the Markov property implies that

P(τ1,2N > βNs)P(τ1,2N > βN t) = P(τ1,2N > βNs; τ
1,2;βNs
N > βN t),
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which gives

hN = P(τ1,2N > βNs; τ
1,2;βNs
N > βN t; ζ

1,2,N
βNs

6= ζ1,2,NβNs−cN ,cN or ζ1,2,NβNs−cN ,2cN 6= ζ1,2,NβNs,cN
)

≤ P(τ1,2N > βNs; ζ
1,2,N
βNs

6= ζ1,2,NβNs−cN ,cN ) + P(ζ1,2,NβNs−cN ,2cN 6= ζ1,2,NβNs,cN
).

(2.3.20)

Thus, by (2.3.20) and formula (2.3.14) we have that

hN ≤ 2νN + P(τ1,2N ≤ 2cN ).

Therefore, hN converges to zero when N goes to infinity. From this we deduce (2.3.16).

Now, to prove (2.3.17) we observe that by the Markov property and (2.3.14) we have

that

P(τ1,2N > βN (t+ s))

≤ P(τ1,2N > βN t)P(τ1,2N > βNs) + sup
ζ0∈C

P(ζ1,2,NβN t
6= ζζ0,NβN t

; τ ζ0N > βN t)P(τ1,2N > βNs)

≤ P(τ1,2N > βN t)P(τ1,2N > βNs) + νN .

Thus, we can take h′N = νN , and the proof is complete.

2.4 Convergence in probability of 1
N log(τ1,2N )

In this section, we prove Theorem 2.2, which states the asymptotic behavior of {log τ1,2N }N .

Before the proof of the theorem, we present two technical results. Proposition below is a

modification of Proposition 2.4 which is suitable for our purpose.

Proposition 2.5. There exists 0 < c < 1 such that for every K

sup
ζ0∈C

P(τ ζ0N > 2N2Ka2N ;@ t ≤ 2N2Ka2N : {x : ζζ0,Nt (x) = 2} ⊂ [1, N ]) ≤ cKN (2.4.1)

for N large enough.

Proof. Let sk = k2NKa2N for 1 ≤ k ≤ N . We observe that the same argument used for
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the inclusion (2.3.5) leads to{
τ ζ0N > 2N2Ka2N ; ∃ yk ∈ A2, zk ∈ A4 : ζζ0,Nsk (yk) = 2

ζζ0,Nsk (zk) = 1 and (yk, sk), (zk, sk) are an N -barrier

}
⊂ {{x : ζζ0,Nsk+S(x) = 2} ⊂ [1, N ]}.

(2.4.2)

Indeed, fix a configuration in the event on the left member of (2.4.2). Since (zk, sk) is

an N -barrier, we have that if ζζ0,Nsk+S(x) 6= 0 for a site x ∈ [−N + 1, 0], then (x, sk + S) is

connected with (zk, sk) inside [−N + 1, 0] and by the priority of the particles of type 1 in

[−N + 1, 0] × [0,∞), we have that ζζ0,Nsk+S(x) = 1. By the same reasoning, we have that

if x′ ∈ [1, N ] and ζζ0,Nsk+S(x′) 6= 0, then (x′, sk + S) is connected with (yk, sk) inside [1, N ]

and by the priority of the particles of type 2 in [1, N ]× [0,∞), it holds that ζζ0,Nsk+S(x) = 2.

Summing up, at the time sk +S every site occupied in [−N + 1, 0] is occupied by a particle

of type 1 and every site occupied in [1, N ] is occupied by a particle of type 2, which yields

(2.4.2).

Now, we observe that (2.4.2) implies

⋃
1≤k≤N

{
τ ζ0N > 2N2Ka2N ;∃ yk ∈ A2, zk ∈ A4 : ζζ0,Nsk (yk) = 2

ζζ0,Nsk (zk) = 1 and (yk, sk), (zk, sk) are an N -barrier

}
⊂

⋃
0≤t≤2N2Ka2N

{{x : ζζ0,Nsk+S(x) = 2} ⊂ [1, N ]}.
(2.4.3)

Therefore, to conclude (2.4.1) it is enough to prove

sup
ζ0∈C

P

(
τ ζ0N > 2N2Ka2N ∩

KN⋂
k=1

{
∀y ∈ A2 ζ

ζ0,N
sk (y) 6= 2 or (y, sk)

is not an N -barrier

})
≤ cKN . (2.4.4)

We observe that the left member in the equation above is the same as the left member of

(2.3.8), with the only difference that in this case we are intersecting KN events instead of

N . Thus, the same procedure used to get the bound cN for the left member of (2.3.8) can

be applied to obtain (2.4.4) (see Proposition 2.4).

In the next lemma, we use the following limit

lim
N→∞

1

N
log(P(T [1,N ] <∞)) = −c∞, (2.4.5)
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where c∞ is as in Remark 2.2. This result is proved for R = 1 in Lemma 3 of [9]. Since every

step of this proof can be applied for the case R > 1, we assume (2.4.5) without proving it.

Lemma 2.1. There exists θ > 0 such that

lim inf
N→∞

1

N
log(P(T [1,N ] < θN)) ≥ −c∞.

Proof. Observe that for any θ > 0

P(T [1,N ] <∞) = P(T [1,N ] < θN) + P(θN < T [1,N ] <∞).

Using (2.2.6) for t = θN we have

P(T [1,N ] <∞) ≤ e−θNĉ + P(T [1,N ] < θN). (2.4.6)

By (2.4.5) and (2.4.6), for all ε > 0 there exists an n such that for all N > n

e−(c∞+ε)N − e−θNĉ ≤ P(T [1,N ] < θN),

which implies

−(c∞ + ε)N + log(1 + e−(θĉ−c∞+ε)N ) ≤ logP(T [1,N ] < θN).

Taking θ > c∞/ĉ, for every ε > 0 we have

−(c∞ + ε) ≤ lim inf
N→∞

1

N
logP(T [1,N ] < θN).

Proof of Theorem 2.2. First, for a fixed ε > 0 we will prove that

lim
N→∞

P(τ1,2N > kNe
(c∞+ε)N ) = 0, (2.4.7)

where kN = 2NK∗a2N +θN , K∗ =
⌊

2c∞+2ε
log(1/c)

⌋
, a2N is as in Proposition 2.2, θ is as in Lemma

2.1 and c is as in Proposition 2.5.
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To do this, we observe that by the Markov property, for every n ∈ N it holds that

P(τ1,2N > nkN ) ≤ (sup
ζ∈C

P(τ ζN > kN ))n. (2.4.8)

Now, we observe that by (2.4.1) for every ζ0 ∈ C we have

P(τ ζ0N > kN ) ≤ cK∗N+

+ P(τ ζ0N > kN ;∃ t ≤ kN − θN : {x : ζζ0,Nt (x) = 2} ⊂ [1, N ]).
(2.4.9)

Furthermore, the strong Markov property and the atractiveness of the classic contact pro-

cess give that

P(τ ζ0N > kN ; ∃ t ≤ kN − θN : {x : ζζ0,Nt (x) = 2} ⊂ [1, N ])

≤ P(T [1,N ] > θN),
(2.4.10)

and by Lemma 2.1, for N large enough we have

P(T [1,N ] > θN) ≤ 1− e−(c∞+2ε)N . (2.4.11)

Substituting formulas (2.4.10) and (2.4.11) into (2.4.9) we obtain that

sup
ζ0∈C

P(τ ζ0N > kN ) ≤ cK∗N + 1− e−(c∞+2ε)N . (2.4.12)

Thus, by (2.4.8) and (2.4.12), for N∗ =
⌊
e(c∞+ε)N

⌋
we have

P(τ ζ0N > N∗kN ) ≤ (1− e−(c∞+2ε)N + e−K
∗ log(1/c)N )N

∗
.

Now, by our choice of K∗, we conclude (2.4.7). Moreover, observe that (2.4.7) implies

lim
N→∞

P(
1

N
log(τ ζ0N ) > c∞ + ε) = 0. (2.4.13)

To conclude the proof, we only need to state that for every ε > 0

lim
N→∞

P(
1

N
log(τ ζ0N ) < c∞ − ε) = 0. (2.4.14)
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For this purpose, observe that τ1,2N is stochastically larger than the minimum of two inde-

pendent variables with the same law of T 1
N . Therefore, we have that

P(
1

N
log(τ ζ0N ) < c∞ − ε) ≤ P(

1

N
log(min{T 1

N ; T̃ 1
N}) < c∞ − ε)

= P(min{T 1
N ; T̃ 1

N} < e(c∞−ε)N )

= P(T 1
N < e(c∞−ε)N )2,

(2.4.15)

where T 1
N and T̃ 1

N are i.i.d. By (2.2.5), the limit of the last term in (2.4.15) is zero, which

implies (2.4.14).

Clearly, from (2.4.13) and (2.4.14) the theorem follows.

In the next remark, we discuss what happens after the first type is extinguished. During

this remark, we denote by ξA[−N+1,N ](t) the classic contact process with initial configuration

A and TA[−N+1,N ] the time of extinction of this process. For the special case A = [−N+1, N ],

we write ξ1[−N+1,N ](t) and T 1
[−N+1,N ].

Remark 2.3. Let T̃ 1
2N be the time of the extinction of both particles, that is

T̃ 1
2N = inf{t > 0 : ζ1,2,N

t = ∅}.

If we ignore the existence of both types of particles, the dynamic of the process is the same

as the classic contact process. Therefore, T̃ 1
2N has the same distribution as T 1

[−N+1,N ] and,

consequently, Remark 2.2 implies that for ε > 0 we have

lim
N→∞

P
(
e(c∞−ε)2N < T̃ 1

2N < e(c∞+ε)2N
)

= 1. (2.4.16)

Moreover, observe that after τ1,2
N the process behaves like the classic contact process, since

after that time there is only one type of particle. Observe also that combining (2.4.16) with

Theorem 2.2 we obtain

lim
N→∞

P
(
e(c∞−ε)2N − e(c∞+ε)N < T̃ 1

2N − τ
1,2
N

)
= 1. (2.4.17)

Furthermore, after the extinction of the first species, the species that survives behaves

like the classic contact process. Thus, T̃ 1
2N − τ

1,2
N has the same law of TAN[−N+1,N ], where
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AN = ζ1,2,N

τ1,2
N

. Using (??) we have that

lim
N→∞

P(ξANa2N = ξ1
[−N+1,N ](a2N );TAN[−N+1,N ] > a2N ) = 0

and by (2.4.17) and the limit above we have that

lim
N→∞

P(ξANa2N = ξ1
[−N+1,N ](a2N )) = 0.

Therefore

lim
N→∞

P(TAN[−N+1,N ] = T 1
[−N+1,N ]) = 1

and by Remark 2.2 we obtain that

lim
N→∞

1

2N
log(T̃ 1

2N − τ
1,2
N ) = lim

N→∞

1

2N
log T 1

[−N+1,N ] = c∞ in Probability.
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Chapter 3

The contact process on the layer

[−L,L]× Z

In this chapter we prove that the contact process restricted to [−L,L]×Z, with two types

of particles, the particles of type 1 having priority in [−L,L] × (−∞, 0] and the particles

of type 2 in [−L,L] × [1,∞), presents metastability behavior. We restrict our study to

the case where the range is R = 1. To this aim, we will need a main tool, an extension of

Mountford-Sweet renormalization to the contact process in [−L,L]×Z, presented in Section

3.1. This construction is the key tool to extend, for the contact process in [−L,L]×Z, the

notion of “barriers” introduced in Section 2.1. Once we have the definition of “barriers”,

the proofs follow closely to those in Sections 2.2 and 2.3 to obtain the equivalents results

for the contact process in [−L,L]× Z.

3.1 An extension of Mountford-Sweet renormalization

In Section 1.4 we described a k-dependent percolation system, Ψ, with closure close to

0, as introduced in [16]. In this section we define an equivalent percolation system for the

contact process restricted to the layer [−L,L]×Z, with infection parameter λ > λL, where

λL is the critical parameter in [−L,L]× Z, defined in (1.5.1).

To simplify notation, during this section we refer to the contact process restricted to

BL = [−L,L]×Z, with initial configuration A ⊂ [−L,L]×Z, as ξABL(t). In the special case

A = BL we write ξ1BL(t).
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Given (m,n) ∈ Λ we define

IÑm =

(
[−L,L]×

(
mÑ

2
− Ñ

2
,
mÑ

2
+
Ñ

2

])
∩ Z2,

IÑ(m,n) = IÑm × {3Ñn},

J Ñ(m,n) = [−L,L]×

{
mÑ

2

}
× [3Ñn, 3Ñ(n+ 1)].

We define a map ΨL(H) : Λ → {0, 1} as follows: set ΨL(m,n) = 1 if all the conditions

below are satisfied

For each rectangle [−L,L]× I ⊂ IÑm−1 ∪ IÑm+1 of area (2L+ 1)
√
Ñ ,

we have [−L,L]× I ∩ ξ1BL(3Ñ(n+ 1)) 6= ∅;
(3.1.1)

If z ∈ IÑm−1 ∪ IÑm+1 and ξ1BL(3Ñn)× {3Ñn} → (z, 3Ñ(n+ 1)), then

(ξ1BL(3Ñn)× {3Ñn}) ∩ IÑ(m,n) → (z, 3Ñ(n+ 1));
(3.1.2)

If (z, s) ∈ J Ñ(m,n) and ξ1BL(3Ñn)× {3Ñn} → (z, s),

then (ξ1BL(3Ñn)× {3Ñn}) ∩ IÑ(m,n) → (z, s);
(3.1.3)

{
z′ ∈ [−L,L]× Z : ∃s, t, 3Ñn ≤ s < t ≤ 3Ñ(n+ 1),

z ∈ IÑm−1 ∪ IÑm+1 such that (z′, s)→ (z, t)

}

⊂ [−L,L]×

[
mÑ

2
− c13Ñ ,

mÑ

2
+ c13Ñ

]
,

(3.1.4)

where c1 is a constant that will be specified below. Set ΨL(m,n) = 0 otherwise.

We dedicate this section to explain how we choose the parameter Ñ such that the law

of ΨL is a finite dependent percolation system with closure close to 0.

The first step is to determine the constant c1 in (3.1.4). We define the rightmost second

coordinate as follows

rs = max{y : ∃ x ∈ [−L,L] such that (x, y) ∈ ξ[−L,L]×(−∞,0]
BL

(s)},
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2L + 1

3Ñ

Ñ

Figure 3.1: Renormalized site for Mountford-Sweet extension

and the leftmost second coordinate

ls = min{y : ∃ x ∈ [−L,L] such that (x, y) ∈ ξ[−L,L]×[1,∞)
BL

(s)}.

Lemma 3.1. There exist c1 and c2 positive constants such that

P
(

inf
0≤s≤t

ls < −c1t

)
= P

(
sup

0≤s≤t
rs > c1t

)
≤ e−c2t. (3.1.5)

Proof. It is clear that rt is bounded by a Poisson process Nt with rate (2L+ 1)λ, therefore

P(Nt > 2(2L+ 1)λt(e− 1)) = P(eNt > e2(2L+1)tλ(e−1))

≤ E(eNt)e−2(2L+1)tλ(e−1) = e(2L+1)λt(e−1)e−2(2L+1)λt(e−1)

= e−(2L+1)λt(e−1),

where the inequality follows by Markov inequality and the second equality is the formula

of the generating function for the Poisson distribution with mean (2L+ 1)λt. Therefore

P
(

sup
0≤s≤t

rs > 2(2L+ 1)λ(e− 1)t

)
≤ P(Nt > 2(2L+ 1)λ(e− 1)t) ≤ e−(2L+1)λ(e−1)t,

and we obtain the lemma for c1 = 2(2L+ 1)λ(e− 1) and c2 = (2L+ 1)λ(e− 1).

The next three results are proved in [16] for the contact process in dimension 1 with

finite range larger than 1. The arguments on those proofs are immediately extended for the
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contact process in the layer [−L,L]×Z only that substituting the Bezuidenhout-Grimmett

renormalization for the adaptation that we mentioned in Section 1.5. For the seek of

completeness, we rewrite these results for our case. For details see [16].

Proposition 3.1. Let ξBL(t) be the contact process in [−L,L] × Z with rate of infection

λ > λL. For any x ∈ [−L,L] the probability that the site (x, 0) survives to time t inside

the layer [−L,L]×Z and that there exists a vacant rectangle [−L,L]× I at time t of length

(2L+ 1)d
√
t inside [−L,L]× [−t/2, t/2] is bounded by Ce−cd

√
t, where c and C are positive

finite constants independent of d ∈ (0, 1] and t.

Idea of the proof: Let T as in Proposition 1.2. We denote the event in the statement of

the proposition as

C =

{
ξ

(x,0)
BL

(t) 6= ∅; ∃ an empty rectangle [−L,L]× I
of area d(2L+ 1)

√
t inside [−L,L]× [−1

2 t,
1
2 t]

}
, (3.1.6)

and also we define

D =

{
Ψ

(x,0)
BL

(t) 6= ∅;∃ a rectangle [−L,L]× I of area d(2L+ 1)
√
t

inside [−L,L]× [− 1
2 t,

1
2 t] which remains empty throughout the time interval [t, t+ 24T ]

}
.

(3.1.7)

We can have that

P(C)e−2(L+1)R224T ≤ P(D),

therefore, instead of proving the estimate for the probability of C we are going to do it

for the probability of D. The idea will be to prove that a vacant rectangle in the contact

process of this area implies a vacant interval in a certain percolation system constructed

using the Bezuidenhout-Grimmett renormalization. As a consequence of Corollary 1.1 it

is possible to prove that, outside an event with probability less than e−cd
√
k for k large

enough, if Φ{0} survives until time k then does not exist an empty interval of length d
√
k

inside [−β̂k, β̂k], where β̂ is the percolation edge speed for Φ.

We take δ = β̂

48Tc1+2β̂
such that

[−t/2, t/2] ⊂
β̂n⋃

m=−β̂n

(R±(m,n) + (z, s)), (3.1.8)
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for s ∈ [0, δt], z ∈ [−L,L]× [−c1δt, c1δt] and n = d(t−δt)/24T e. It is possible to prove that

outside an event with probability smaller than e−c
√
δt there exists a stopping time T ∈ [0, δt]

and a site z(T ) such that Φ(z(T ),T ) survives for all times. By Lemma 3.1 we can also suppose

that in this event z(T ) ∈ [−c1δt, c1δt]. Select N such that T + 24T ∈ [t, t+ 24T ], then by

the arguments above

P(D) ≤ e−cd
√
δt

+

dt/24T e∑
N=d(1−δ)t/24T e

P(Φ
{0}
z(T ),T (N) 6= ∅,∃ a vacant interval of length

d
√
t

34K
in [−β̂N, β̂N ])

≤ e−cd
√
δt

+

dt/24T e∑
N=d(1−δ)t/24T e

P(Φ
{0}
z(T ),T (N) 6= ∅,∃ a vacant interval of length dc′

√
N in [−β̂N, β̂N ])

≤ e−cd
√
δt + e−c

′′d
√
t

with 0 < c′ ≤ 1 and c′′ independent on d and t.

Remark 3.1. Using Corollary 1.1 for the Benzuidenhout-Grimmett renormalization, it is

possible to prove the following: for any k and m there is a constant c > 0, depending on k

and m, such that if on the rectangle [−L,L]× [0, N ] both A and B are subsets that intersect

every interval of area m
√
N , then P(ξBt = 0 on A) ≤ e−c

√
N for every t ∈ [kN, 2kN ] and

sufficiently large N .

In [16] is stated the equivalent result for the contact process in dimension 1 and finite

range.

Lemma 3.2. Let A be a subset of [−L,L]×Z such that A intersects every rectangle [−L,L]×
I of area (2L + 1)

√
N inside [−L,L] × [0, N ], then for every z ∈ [−L,L] × [−N/2, 3N/2]

we have that

P(ξ1BL(3N)(z) = 1, ξ
A∩([−L,L]×[0,N ])
BL

(3N)(z) = 0) ≤ Ce−cN1/2
. (3.1.9)

Proof. For z = (z1, z2) ∈ [−L,L]× [−N/2, 3N/2], denote ξ̃
(z,3N)
BL

(t) the dual contact process

restricted to [−L,L] × Z and beginning in (z, 3N). By Proposition 3.1 we have that at

time 2N the probability that this process has an empty rectangle [−L,L] × I of area
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√
3N/
√

3 =
√
N in [−L,L] × [−N,N ] + z is smaller than Cec

√
3N . By our choice of z we

have that

[−L,L]× [−N,N ] + z ⊃ [−L,L]× [0, N ].

Therefore, outside an event with probability smaller than Cec
√

3N , ξ̃
(z,3N)
BL

(t) intersects every

rectangle [−L,L]× I of area
√
N inside [−L,L]× [0, N ].

By Remark 3.1 there is a constant c > 0 such that if on the rectangle [−L,L] × [0, N ]

both A and B are subsets of [−L,L]× Z that intersect every rectangle [−L,L]× I of area√
N , then

P(ξA[−L,L]×[0,N ] = 0 on B) ≤ e−c
√
N ,

for sufficiently large N . Thus, the probability that ξ
A∩([−L,L]×[0,N ])
BL

(N) = 0 on ξ̃
(z,3N)
BL

(2N)∩
([−L,L]× [0, N ]) is smaller than Cec

√
3N .

Lemma 3.3. Let A be a set of [−L,L]× [0, N ] that intersects every rectangle [−L,L]× I
of area (2L+ 1)

√
N . The probability that

{ξABL(s)(z) = 0; ξ
[−L,L]×([0,N ]c)
BL

(s)(z) = 1}, (3.1.10)

for some z ∈ [−L,L]× {N/2} and s ∈ [0, 3N ], is less than Ce−c
√
N ,where C and c positive

constants independent of N .

Proof. We rewrite the proof of Corollary 5 in [16] for our case:

It is clear that we can prove the statement in the lemma for a fixed z because there is

a bounded quantity of sites. Thus, for a given z ∈ [−L,L] × {N/2} denote the event in

(3.1.10) by B(s). For a fixed configuration in the union of B(s), 0 ≤ s ≤ 3N denote s0 as

the first time such that B(s0) occurs. Since s0 is a stopping time we have that given s0

with probability equal to e−(4λ+1) there are no marks of infection coming in or marks of

death at z during the time interval [s0, s0 + 1], for any z ∈ [−L,L]× {N/2}. Therefore

P(∪
s
B(s)) ≤ e(4λ+1)

∑
1≤k≤3N

P(B(k)).

Hence, it is enough to prove for a fix (z, s) that the event in (3.1.10) has probability

less than Ce−c
√
N .

We divided into two cases. First case if s ≤ N/2c1, for c1 as in Lemma 3.1. Using
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Lemma 3.1 for the dual process beginning at (z, s) we obtain that the event in (3.1.10) has

probability less than Ce−c
√
N .

Now, suppose that s ≥ N/2c1. Suppose that for the point (z, s) with z ∈ [−L,L]×{N/2}
we have (3.1.10). Then the dual process beginning at (z, s) survives for a time s ≥ N/c1.

Denote {ξ̃(z,s)
BL

(t)}0≤t≤s as the dual contact process restricted to [−L,L]×Z. By Proposition

3.1, outside an event with probability less than Ce−cd
√
t, ξ̃BL(t) intersects every rectangle

[−L,L]×I of area (2L+1)d
√
t in [−L,L]×([−t/2, t/2]+N/2), with t ≤ s. This implies that,

outside an event with probability less than Ce−cd
√
N/4c1 , ξ̃

(z,s)
BL

(s−N/4c1) intersects every

rectangle [−L,L]× I of area d
√
s−N/4c1 in [−L,L]× [(1/2− 1/8c1)N, (1/2 + 1/8c1)N ].

If s ≤ N +N/4c1, then s−N/4c1 ≤ N and ξ̃
(z,s)
BL

(s−N/4c1) intersects every rectangle

[−L,L] × I of area
√
N in [−L,L] × [(1/2 − 1/8c1)N, (1/2 + 1/8c1)N ] (outside an event

with probability smaller than Ce−cd
√
N/4c1).

If s > N + N/4c1 we take d =
√
N/
√
s−N/4c1 and again we obtain that ξ̃

(z,s)
BL

(s −
N/4c1) intersects every rectangle [−L,L]×I of area

√
N in [−L,L]×[(1/2−1/8c1)N, (1/2+

1/8c1)N ] (outside an event with probability smaller than Ce−cd
√
N/4c1).

In any case, by Remark 3.1 we have that the probability of the event in (3.1.10) is

smaller than Ce−c
√
N .

For δ > 0 we choose Ñ such that

The event in Proposition 3.1 has probability less than δ/4 for t = 3Ñ ;

Probability (3.1.9) in Lemma 3.2 is less than δ/4;

The event in Lemma 3.3 has probability less than δ/4;

The probability in Lemma 3.1 is less than δ/8 for t = 3Ñ .

These restrictions on Ñ imply that given the Harris construction until time 3Ñn the proba-

bility of the event the simultaneous occurrence of (3.1.1), (3.1.2), (3.1) and (3.1.4) is larger

than (1 − δ). Therefore, for a suitable k depending on Ñ , the map ΨL is a k-dependent

oriented percolation system with closure smaller than δ.

48



3.2 Barriers and Metastability

Let ζ1,2,NL (t) be the contact process restricted to the layer [−L,L] × [−N + 1, N ] at

time t, initial configuration 1[−L,L]×[−N+1,0] +21[−L,L]×[1,N ] and the particles of type 1 have

priority in [−L,L] × [−N + 1, 0] and the particles of type 2 in [−L,L] × [1, N ]. In this

section we prove that the time of the first extinction τL,1,2N properly rescaled converges to

the exponential distribution with rate 1. The procedure to obtain this result will be to

adapt every step used in the proof of the case R > 1 and d = 1.

First we extend the definition of N -barrier ?? to the contact process in the layer

[−L,L] × Z. For Ñ as in Mountford-Sweet extension, let us denote M̃ = M̃(N) =

b2(N−2c1K̃Ñ)

Ñ
c and we set S̃ = S̃(N) = K̃ÑM̃2 + 2.

Definition 3.1. (a) For z ∈ [−L,L]× [1, N ] we say (z, 0) is an L×N -barrier if for all

z′ ∈ [−L,L]× [1, N ] such that [−L,L]×Z×{0} → (z′, S̃), then (z, 0)→ (z′, S̃) inside

[−L,L]× [1, N ].

(b) For z ∈ [−L,L]× [−N +1, 0] we say (z, 0) is an L×N -barrier if for all z′ ∈ [−L,L]×
[−N+1, 0] such that [−L,L]×Z×{0} → (z′, S̃), then (z, 0)→ (z′, S̃) inside [−L,L]×
[−N + 1, 0].

To prove the equivalent of Proposition 2.1 for our case, the argument is the same as in

that scenario, only that substituting in the proof the Mountford-Sweet renormalization for

the renormalization defined in Section 3.1. Therefore, we obtain that

Proposition 3.2. There exists η̃ = η̃(λ, L) > 0 such that for all N large enough

Pz((z, 0) is an L×N -barrier) > η̃, (3.2.1)

for any z ∈ [−L,L] ×
[
−M̃Ñ

2 − Ñ
2 ,
−ı̃Ñ

2 + Ñ
2

]
∪ [−L,L] ×

[
ı̃Ñ
2 −

Ñ
2 ,

M̃Ñ
2 + Ñ

2

]
, where ı̃ is

given by

ı̃ = ı̃(N) =

{
b4αK̃Ñc if M̃2 + b4αK̃Ñc is even,

b4αK̃Ñc+ 1 if M̃2 + b4αK̃Ñc is odd.
(3.2.2)

To simplify notation we denote

Ã2 = [−L,L]×

[
−M̃Ñ

2
− Ñ

2
,
−ı̃Ñ

2
+
Ñ

2

]
,
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Ã4 = [−L,L]×

[
ı̃Ñ

2
− Ñ

2
,
M̃Ñ

2
+
Ñ

2

]
,

Ã1 = [−L,L]×

[
−N + 1,

−M̃Ñ

2
− Ñ

2
− 1

]
, Ã5 = [−L,L]×

[
N,

M̃Ñ

2
+
Ñ

2

]

and

Ã3 =

[
−ı̃Ñ

2
+
Ñ

2
,
ı̃Ñ

2
− Ñ

2

]
.

Now we need to obtain regeneration for the classic contact process in [−L,L]× [1, N ]. We

proceed as in Proposition 2.2. By the result above given an occupied site, we have a positive

probability of creating an L×N -barrier. For a given configuration ξ ∈ [−L,L]× [1, N ] such

that the infection last until time N(S̃ + 1) then outside an event with probability (1− η̃)N

there exists an L ×N -barrier in Ã2. The definition of L ×N -barrier implies the coupling

of the two processes, the one with initial configuration ξ and the one beginning with full

occupancy in [−L,L]× [1, N ]. We denote ãN = N(S̃ + 1) as the regeneration time for the

classic contact process in the layer. We select b̃N = bN , for bN as in item (iii) of Proposition

2.2.

The next step is the proof of the equivalent to Proposition 2.3 for the contact process

in the layer. This result first gives an estimative for the stopping times Sk and Ŝk. First of

all we redefine this two stopping times to the contact process with two type of particles and

priority in the layer [−L,L]× [−N,N ]. Given k ≥ 1 and N , define the following stopping

times

SL,k = inf{t > (k − 1)ã2N : ∃ z ∈ [−L,L]× [1, N ], ζNL (t)(y) = 2},

and

ŜL,k = inf{t > (k − 1)ã2N : ∃ z′ ∈ [−L,L]× [−N + 1, 0], ζNL (t)(z′) = 1}.

We remember to the reader that for Proposition 2.3 the main two ingredients were the

regeneration for the contact process in dimension 1 and Lemma 1.1. For the contact process

in the layer we have also the regeneration and Lemma 1.1, the rest of the arguments are

also valid for this case. Therefore, we can state the proposition
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Proposition 3.3. There exists c, 0 < c < 1, such that

sup
ζ∈CL

P(τ ζN > Nã2N ;∃ k 1 ≤ k ≤ N : SL,k > kã2N ) ≤ Nc2N , (3.2.3)

for all N large enough.

With the same arguments used in Proposition 2.4, Proposition 3.2 and Proposition 3.3

together implies the regeneration for the contact process with two type of particles and

priorities in the layer. To explain the idea of the proof for the contact process in the layer

first we define the following sites

zζk such that zζk ∈ Ã4 and ζζ,NL (c̃k)(z
ζ
k) = 2;

and

zζk such that zζk ∈ Ã2 and ζζ,NL (c̃k)(z
ζ
k) = 1,

for a configuration ζ ∈ CL, 1 ≤ k ≤ N and c̃k = 2kNã2N .

The idea of the proof is the same: by Proposition 3.3 we have that outside an event

with exponential small probability if both type of particles are alive for the process with the

initial configuration ζ and for the process with the initial configuration 1[−L,L]×[−N+1,0] +

21[−L,L]×[1,N ] until time c̃N we can define zζk, zζk, z
1,2
k and z1,2k . By Proposition 3.2 from each

site (·, c̃k), · ∈ {zζk, z
ζ
k, z

1,2
k , z1,2k }, we have positive probability of having an L × N -barrier

inside the halfbox favorable for the type of particle that occupied this point. On the other

hand we also have positive probability, independent of N , that there is non mark of infection

in the regions Ã1× [c̃k + S̃− 1, c̃k + S̃], Ã3× [c̃k + S̃− 1, c̃k + S̃] and Ã5× [c̃k + S̃− 1, c̃k + S̃]

and there is non particle alive at this regions at time c̃k+ S̃. Summing up: outside an event

with exponential small probability if min{τL,ζN , τL,1,2N } > c̃N + S̃ we can find a time c̃k such

that

(zζk, c̃k) and (z1,2k , c̃k) are L×N -barriers inside [−L,L]× [1, N ],

(z1,2k , c̃k) and (z1,2k , c̃k) are L×N -barriers inside [−L,L]× [−N + 1, 0],

there is non particle alive at time c̃k + S̃ in Ã1, Ã3 and Ã5.

Therefore, in this event ζζ,NL (c̃N + S̃) = ζ1,2,NL (c̃N + S̃). For ẽN = c̃N + S̃ and d̃N = b̃N we

can state the following proposition
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Proposition 3.4. There are sequences ẽN and d̃N that satisfy

(i) lim
n→∞

inf
ζ∈CL

Pζ(ζ1,2,N
L (ẽN ) = ζNL (ẽN ) or τLN < ẽN ) = 1;

(ii) d̃N
ẽN
→∞;

iii) lim
n→∞

P1,2(τLN < d̃N ) = 0,

where CL = {ζ ∈ {0, 1, 2}[−L,L]×[−N+1,N ] : ∃ x, y ζ(x) = 1, ζ(y) = 2}.

Let βLN such that P(τL,1,2N > βLN ) = e−1. As we prove in Section 2.3.1 Proposition 3.4

imply

lim
N→∞

∣∣∣P(τL,1,2N > βLN (t+ s))− P(τL,1,2N > βLN t)P(τL,1,2N > βLNs)
∣∣∣ = 0,

for every t ≥ 0 and we obtain the convergence in distribution of {τL,1,2N /βLN}N to the

exponential distribution with mean 1.
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Chapter 4

More results for the

one-dimensional contact process

with two types of particles and

priority

During this chapter we are dealing with the contact process in dimension 1. The first

process that we study is the contact process in infinite volume with two types of particles

and priority, with initial configuration 1(−∞,0] + 21[1,∞). In this case we consider the range

R ≥ 1. For this process we prove the tightness of the positive part of the rightmost particle

1 at time t, that we denote by

r1
t = max{x : ζ1,2t (x) = 1}. (4.0.1)

Having the tightness we prove the existence of an invariant measure which gives measure

1 for the configurations in {0, 1, 2}Z with infinite particles of type 1 and type 2. The

statements are as follows

Theorem 4.1. For every ε > 0 there exists M such that

P(max{r1
t , 0} ≤M) ≥ 1− ε (4.0.2)
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for every t > 0.

Theorem 4.2. For the contact process with two types of particles there exists an invariant

measure ν that satisfies

ν(ζ ∈ {0, 1, 2}Z : |{x : ζ(x) = 1}| =∞, |{x : ζ(x) = 2}| =∞) = 1.

The other process that we study is the contact process with two types of particles in the

interval [−N+1, N ] and initial configuration 1[1,N ] +21[−N+1,0]. We denote this process by

ζ2,1,N (t). Different from what we have seen so far, at time 0 the particles of type 1 are in

the region favorable to the particles of type 2 and vice-versa. We state that, in the nearest

neighbor case, the time when one of the families dies in the interval [−N + 1, N ], τ2,1N , is

at most linear with respect to N , when N tends to infinite. More precisely in Section 4.3

we prove the following theorem

Theorem 4.3. Let R = 1 and α as in (1.1.9), then

lim
N→∞

τ2,1
N

N
=

1

α
in Probability. (4.0.3)

4.1 Graphical construction of the contact process with two

types of particles and priority in Z

In Section 1.2 we give a definition of the contact process with two types of particles and

priority restricted to a finite interval, [−N + 1, N ]. In this chapter we deal with the version

of this process in Z. For this process we also have a definition using the Harris construction.

Let A and B be two disjoint subsets of Z. We denote the contact process with two

types of particles and priority with initial configuration 1A + 21B as ζA,Bt . We will define

the process almost surely for every time q ∈ Q+, the extension for all times we defined as

ζA,Bt (x) = lim
q→t+

ζA,Bq (x), almost surely. In this way, we also guarantee that ζA,Bt is a càdlàg

stochastic process. First, we observe that P(|ξ̃0(t)| < ∞) = 1 for every q ∈ Q+ because

|ξ̃0(q)| ≤ RNq, with {Nt}t a Poisson process with rate 2λ. Then for every x ∈ Z and every

q ∈ Q+, |ξ̃x(q)| <∞ almost surely. Therefore, by the definition provided in Section 1.2, for
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an N such that ξ̃x(q) ⊂ [−N + 1, N ]

ζA∩[−N+1,N ],B∩[−N+1,N ],N
q (x) = ζA∩[−M+1,M ],B∩[−M+1,M ],M

q (x)

for every M ≥ N .

Hence, we define ζA,Bq (x) = ζ
A∩[−N+1,N ],B∩[−N+1,N ],N
q (x) in Ω′ = {|ξ̃x(q)| < ∞, ∀x ∈

Z,∀q ∈ Q+}, which has probability 1.

4.2 One-dimensional contact process with two types of par-

ticles in Z

In this section we present some results for the contact process with two types of particles

and priority in Z with initial configuration 1(−∞,0]+21[1,∞) and range R > 1. In Subsection

4.2.1 we present some results for the k-dependent percolation systems with closure close to

0. We dedicate Subsection 4.2.2 to the proofs of Theorem 4.1 and Theorem 4.2. First we

apply the results of Section 4.2.1 to the Mountford-Sweet renormalization and we obtain

Theorem 4.1. Theorem 4.2 is a consequence of Theorem 4.1.

4.2.1 More results on k-dependent percolation system with closure close

to 0

During this subsection we use the notation introduced in Section 1.3 for the k-dependent

percolation system. Let (Ω,F ,P) be a k-dependent oriented percolation system with small

closure. We define the following events:

An = {∃ y : y > n/2 and (2, 0) (y, n)},

Γn =

{
there exists a path connecting {2} × {0} Z× {n} such that

this path does not intersect the set{(m, s) ∈ Λ : m ≤ s/2}

}
and

Γ =
⋂
n∈N

Γn.

The next lemma will be used in the proof of Theorem 4.1.
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Lemma 4.1. For ε > 0 and k ∈ N there exist p0 and δ such that

i) P̂p(∃ n : An = ∅) < ε for all p ∈ [p0, 1];

ii) P̂p(Γ) > 1− ε for all p ∈ [p0, 1];

iii) if (Ω,F ,P) is a k-dependent oriented percolation system with closure below δ, then

P



∃ a path connecting [n/2,+∞)× {0} ∩ Λ (2, n)

and this path does not intersects the set

{(m, s) ∈ Λ : m ≤ n/2− s/2}


 > 1− ε,

for all n.

Proof. Observe that in the set {|C(0,2)| =∞}

{x : (2, 0) (x, n)} ∩ [l̂2n, r̂
2
n]

= {x : ∃ y ∈ (−∞, 0] such that (y, 0) (x, n)} ∩ [l̂2n, r̂
2
n].

Therefore, we conclude that

r̂n = r̂{2}n a.s in {|C(2,0)| =∞}. (4.2.1)

The proof of item (i) follows by (1.3.4), (1.3.5), (4.2.1) and the following inequality

P̂p(∃ n : An = ∅)) ≤ P̂p(C(2,0) is finite) + P̂p(∃ n ≥ 1 : r̂n < n/2).

To prove item (ii), we first observe that by the definition of the events An we have that

Γc ⊂ ∪
n≥0

An.

Item (i) implies that there exists p0 such that for all p ∈ (p0, 1]

Pp(Γc) ≤ Pp(∃ n : An = ∅) < ε.
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To obtain item (iii), we first observe that the event

A =


∃ a path connecting [n/2,+∞)× {0} ∩ Λ (2, n)

and this path does not intersects the set

{(m, s) ∈ Λ : m ≤ n/2− s/2}

 ,

is decreasing. From Theorem 1.3, there exists δ > 0 such that for all k-dependent oriented

percolation system (Ω,F ,P) with closure under δ, we have that

P



∃ a path connecting [n/2 + 2,+∞)× {0} ∩ Λ (2, n)

and this path does not intersects the set

{(m, s) ∈ Λ : m ≤ (n+ 4)/2− s/2}


c

≤ Pp0



∃ a path connecting [n/2 + 2,+∞)× {0} ∩ Λ (2, n)

and this path does not intersects the set

{(m, s) ∈ Λ : m ≤ n/2− s/2}


c

= Pp0



∃ a path connecting {2} × {0} Z× {n} such that

this path does not intersect the set

{(m, s) ∈ Λ : m ≤ s/2}


c

= Pp0((Γn)c) ≤ Pp0((Γ)c) ≤ ε,

where the second equality above is exclusively true for the Bernoulli product measure.

4.2.2 Proofs of Theorem 4.1 and Theorem 4.2

Proof of Theorem 4.1: Using Lemma 4.1 and Proposition 1.1 for ε > 0 there exist k, K̂ and

N̂ such that Ψ is a k-dependent percolation system and

P



∃ a path connecting [2 + n/2,+∞)× {0} ∩ Λ (2, n)

and this path does not intersects the set

{(m, s) ∈ Λ : m ≤ (n+ 4)/2− s/2}


 > 1− ε

for all n. In fact, we need a translation of the event in the probability above. We denote
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the unit of translation by  and define it as follows

 =


⌈
2αK̂N̂

⌉
if n is even,⌈

2αK̂N̂ + 1
⌉

if n is odd.
(4.2.2)

By the invariance translation of Harris construction, we have that

P



∃ a path connecting [n/2− s/2 + ,+∞)× {0} ∩ Λ (+ 2, n)

and this path does not intersects the set

{(m, s) ∈ Λ : m ≤ n/2− s/2 + }


 > 1− ε.

We take t ≥ K̂N̂ and choose n =
⌊

t
K̂N̂

⌋
+ 1. For this n, with probability larger than 1− ε,

there exists a sequence {mk}0≤k≤n such that

Ψ(mk, k) = 1 ∀ k ∈ {0, . . . , n},

|mk+1 −mk| = 1,

mk ≥ n/2− k/2 + .

Also, we denote

Bn = ∪0≤k≤nI
K̂,N̂
(mk,k) ∪ J

K̂,N̂
(mk,k).

By the properties (1.4.2) and (1.4.3) of the Mountford-Sweet renormalization, we observe

that in the trajectory of the contact process t 7→ ξ(t)(H) every infected site in Bn descends

from IK̂,N̂(m0,0) ⊂ Z+. Property (1.4.4) of the renormalization and the fact that mk ≥ n/2 −
k/2 +  imply that such sites are infected for paths to the right of { (+2)N

2 − 2αK̂N̂} ×
[0,+∞) ⊂ Z+ × [0,+∞).

In this situation, for any y ∈ ξ(t) ∩ [ (+2)N
2 + 2αK̂N̂,+∞) we have two possibilities:

Z×{0} → (y, t) with a path that intersects Bn or for a path that stays for all times to the

right of Bn. In both cases, we can construct a path contained in { (+2)N
2 −2αK̂N̂}×[0,+∞).

By Lemma 1.1, ζ1,2t (y) = 2. We can conclude that

1− ε ≤ P
(

(r1)+
t <

(+ 2)N

2
+ 2αK̂N̂

)
,

for all t ≥ K̂N̂ . Then, we choose M1 = 2αK̂N̂ + N/2 which does not depend on t. In the
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Bn

Figure 4.1: We represent the blue paths referent to particles of type 1 and the red ones to
particles of type 2.

case t < K̂N̂ , observe that

sup
0≤t≤KN

(r1
t )

+ < +∞,

then there exists M2 such that

1− ε < P((r1
t )

+ < M2),

for all 0 ≤ t ≤ K̂N̂ .

Proof of Theorem 4.2: At the space {0, 1, 2}Z we define the following metric

ρ̃(η, η′) =
∑
x∈Z

|η(x)− η′(x)|
2|x|(1 + |η(x)− η′(x)|)

,

where η, η′ ∈ {0, 1, 2}Z. Observe that for all η, η′, ρ̃(η, η′) ≤ 2, also with this metric {0, 1, 2}Z

is a complete space. Then ({0, 1, 2}Z, ρ̃) is a compact space. We denote νt as the law of

ζ1,2t and

µT (A) =
1

T

∫ T

0
νt(A)dt,

for all Borel set A.
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Because the space is compact, {µT }T is a tight family. Let {µTk}k be a convergent

subsequence to a measure ν. Using Proposition 1.8 and Chapter I of [12], we have that ν

is an invariant measure for the process. Let bn be such that bn converges to infinity and

define the following sets

Abn =

{
ζ ∈ {0, 1, 2}Z :

|{x : ζ(x) = 1} ∩ [−bn,−M ]|
bn −M

≥ ρ

2
,
|{y : ζ(y) = 2} ∩ [M, bn]|

bn −M
≥ ρ

2

}
and

Bbn =

{
ξ ∈ {0, 1}Z :

|{x : ξ(x) = 1} ∩ [−bn,−M ]|
bn −M

≥ ρ

2
,
|{y : ξ(y) = 1} ∩ [M, bn]|

bn −M
≥ ρ

2

}
,

where ρ = P(T 0 = ∞). From Theorem 4.1 we know that for ε > 0 exists M such that for

all t ≥ 0

P(r+
t > M) + P(l−t > M) ≤ ε.

We observe that for all t ≥ 0

νt(Acbn) ≤ P(ξZ(t) ∈ Bcbn) + P(r+
t > M) + P(l−t > M) ≤ µ(Bcbn) + ε,

where µ is the non-trivial invariant measure of the classic contact process. Then,

µTk(Acbn) ≤ µ(Bcbn) + ε.

By the convergence of the sequence {µTk}k to µ, we have that

ν(Acbn) ≤ µ(Bcbn) + ε.

As a consequence of the ergodicity of µ, we have that

lim
n→∞

ν(Acbn) ≤ lim
n→∞

µ(Bcbn) + ε = ε.

Observe that S = lim supAbn is a subset of {ζ ∈ {0, 1, 2}Z : |x : ζ(x) = 1| = ∞ and |x :

ζ(x) = 2| =∞}. Then, we conclude that

ν({ζ ∈ {0, 1, 2}Z : |x : ζ(x) = 1| =∞ and |x : ζ(x) = 2| =∞}) = 1,
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which proves Theorem 4.2.

4.3 Proof of Theorem 4.3

As we mention in the beginning of this chapter, in this section we are dealing with the

contact process with two types of particles and priority with range R = 1. The priority will

be the same as before: particles of type 1 have priority in (−∞, 0] and particles of type 2

in [1,∞). But now we explore the behavior of the process when the initial configuration

is 21(−∞,0] + 1[1,∞), that is, in the initial configuration the particles of type 1 are in the

region favorable to the particles of type 2 and vice-versa.

We denote by ζ2,1t the contact process with two types of particles and the particles

of type 1 having priority in (−∞, 0] and the particles of type 2 in [1,∞), with initial

configuration 21(−∞,0] + 1[1,∞). Also, we use the notation ζ2,1s,t for the contact process

with two types of particles with regions of priority and initial configuration as before but

constructed in Θ(0,s)(H), the translation of Harris graph to time s. We denoted by ζ2,1,N (t)

the contact process with two types of particles and priority restricted to the interval [−N +

1, N ] with initial configuration 21[−N+1,0] + 1[1,N ].

We define Ĉ as the set of configurations ζ0 ∈ {0, 1, 2}Z such that the sites occupied by

particles of type 2 are at the left of the sites occupied by particles of type 1. We observe

that, since we are in the nearest neighbour scenario, the set Ĉ is invariant for the contact

process with two types of particles and priority. Let ζ0 be a configuration in Ĉ, we define

the leftmost 1 and the rightmost 2 at time t as follows

l̂ζ0t = min{x : ζζ0t (x) = 1}

and

r̂ζ0t = max{x : ζζ0t (x) = 2}.

In the special case ζ0 = 21(−∞,0] + 1[1,∞), we write r̂1
t and l̂2t . For the classic contact

process, we reserve the usual notation r
(−∞,0]
t for the rightmost occupied site at time t and

l
[0,+∞)
t for the leftmost occupied site at time t, which were defined in (1.1.7) and (1.1.8)

respectively.

61



For A ⊂ N, define χAt as follows

χAt = {x : there is a path inside N from (y, 0) to (x, t) for some y ∈ A},

and denote ρ+ as

ρ+ = P(χ0
t 6= ∅, ∀ t).

We also denote by λ+
c the critical parameter for the contact process in N. In Corollary

2.5 of [2] was proved that λ+
c = λc(Z). Since we are dealing with the supercritical contact

process in Z, the process restricted to N is also supercritical. In the supercritical case

the process χN
t converge in distribution, when t goes to infinity, to a non trivial invariant

probability measure that we denote by µ+. Another useful observation is the fact that χN
t

is stochastically larger than µ+, and this is obvious by the property of attractiveness.

In order to obtain Theorem 4.3, we first give some results for the process defined in

infinite volume ζ2,1t . For ζ0 a configuration in Ĉ we define the following stopping times:

Sζ00 = 0; Sζ01 = inf{t > 0; r̂ζ0t > 0 or l̂ζ0t ≤ 0}.

Being defined Sζ00 , S
ζ0
1 , . . . , S

ζ0
k−1, the k-th stopping time is given by

Sζ0k =

{
inf{t > Sk−1 : l̂ζ0t ≤ 0} if r̂ζ0Sk−1

> 0,

inf{t > Sk−1 : r̂ζ0t > 0} if l̂ζ0Sk−1
≤ 0.

These are the times when in the process {ζζ0t }t there is a cross from a particle of type 1

to (−∞, 0] or a particle of type 2 to [1,∞). In the special case ζ0 = 21(−∞,0] + 1[1,∞), we

omit the superscript. The following variable counts the number of finite stopping times Sk

G = k in {Sk < +∞} ∩ {Sk+1 = +∞} for k ≥ 0. (4.3.1)

In the next lemma we prove that the variable G is stochastically dominated by a geometric

distribution.

Lemma 4.2. For G as in (4.3.1) we have that

P(G ≥ k) ≤ (1− ρ+)k−1, k ≥ 1. (4.3.2)
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Furthermore, for k = 0 we have that

P(G = 0) = 0. (4.3.3)

Proof. To obtain (4.3.2), we first observe that for any ζ0 ∈ Ĉ the processes ζζ0t and χ1
t are

defined using the same Harris graph, therefore we have a coupling between both processes.

For a configuration ζ0 such that ζ0(1) = 2, if χ1
t 6= ∅ for all t, then for the process {ζζ0t }t

there is non cross from a particle of type 1 to (−∞, 0], because the particles of type 2 have

the priority in [1,∞). From this argument follows the next inequality

P(ζζ0· ∈ {S
ζ0
1 <∞}) ≤ P(∃ t ≥ 0 : χ1

t = ∅) = 1− ρ+. (4.3.4)

In the case ζ0(0) = 1, we also have (4.3.4) by the symmetry of Harris construction. Since

ζ2,1Sk−1
has a particle of type 2 in the site 1 or a particle of type 1 in the site 0, by the Strong

Markov property and (4.3.4) we have that

P(G ≥ k) = P(ζ2,1Sk−1,· ∈ {S
ζ2,1Sk−1

1 <∞};Sk−1 <∞) ≤ (1− ρ+)P(Sk−1 <∞)

and by induction on k, for all k ≥ 1 we obtain (4.3.2). To obtain (4.3.3), we first define the

next stopping time

T = inf{t : (−∞, 0]× {0} → (1, t) or [1,∞)× {0} → (0, t)}.

The fist step will be to prove the following inclusion

{T <∞} ⊂ {G > 0}. (4.3.5)

Fix a realization in the set on the left member of (4.3.5) such that

(−∞, 0]× {0} → (1, T ).

In this case, by the definition of T there is non path in the Harris graph connecting [1,∞)×
{0} with (−∞, 0] × [0, T ). Therefore, for the contact process with two types of particles

and priority with initial configuration 21(−∞,0] + 1[1,∞) there is non particle of type 1 in

(−∞, 0]× [0, T ). For this reason, the path connecting (−∞, 0]×{0} with (1, T ) is a path of
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particles of type 2 that ends in a site in which type 2 has priority, so ζ2,1T (1) = 2. Then in

this case G > 0. The argument for the case [1,∞)×{0} → (0, T ) is very similar. Hence, we

have proved the inclusion (4.3.5). Equation (4.3.3) follows from (4.3.5) and the fact that

the event {T = 0} has probability equal to zero.

The previous lemma implies that the variable G is finite and more than that, it is

stochastically dominated by a geometric distribution. By the nature of the dynamics, after

SG only one type of particle has the priority in all Z. Therefore, after this time, the process

behaves as the Grass-Bushes-Trees (G-B-T) process.

Let us recall the definition of the G-B-T model. Let A and B be two disjoint subsets

of Z, we denote by ζ̃A,Bt the G-B-T process where the particles of type 2 (the trees) have

the priority and with initial configuration 1A + 21B. Given the Harris graph, this process

is defined as follows

ζ̃A,Bt (x) =


2, if B × {0} → (x, t)

1, if B × {0}9 (x, t) and A× {0} → (x, t)

0, other case,

for x ∈ Z and t ≥ 0. In the especial case A = [1,∞) and B = (−∞, 0], we use the notation

ζ̃2,1t . We will refer to ζ̃A,B,Nt for the G-B-T process restricted to [−N + 1, N ] with initial

configuration 1A + 21B, where A and B are disjoint subsets of [−N + 1, N ]. For A = [1, N ]

and B = [−N + 1, 0], we use the notation ζ̃2,1,Nt .

We state the fact that we can compare the contact process with two types of particles

and priority with the G-B-T process in the following remark.

Remark 4.1. Let A and B be disjoint subsets of Z such that A ⊂ [0,∞), B ⊂ (−∞, 1] and

1 ∈ B, then

{SA,B2 = +∞} ⊂ {ζ̃A,Bt = ζA,Bt ∀ t ≥ 0}.

Once we have the comparison between the contact process with two types of particles

and priority with the G-B-T model, we need another important ingredient to prove Theorem

4.3, wich we state in the next lemma. In this lemma we prove that for the G-B-T model

restricted to [−N + 1, N ] and N large enough, with probability close to one, the extinction

time of the bushes is at most linear in N if in the initial configuration there are a large (on

N) number of trees. Before proving this result let us define the time of extinction of the
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bushes. For A and B two disjoint subsets of Z we define the time when the bushes or the

trees become extinct for the G-B-T model restricted to the interval [−N + 1, N ] as

τ̃A,BN = inf{t > 0 : {x : ζ̃A,B,Nt (x) = 1} = ∅ or {x : ζ̃A,B,Nt (x) = 2} = ∅}.

Lemma 4.3. Let 0 < η < 1, 0 < ρ < 1, A and B be subsets of [−N + 1, N ] such that

B ⊂ [−N + 1, 1] and A ⊂ [2, N ]. Assume also that |B ∩ [−ηN, 1]| > ρηN/2. In this

conditions and for δ such that 0 < δ < α we have that

lim
N→∞

P(τ̃A,BN > Nβ) = 0,

where β = (1 + η)/(α− δ).

Proof. To simplify the notation let us denote B ∩ [−ηN, 0] by BN . Observe that

{τ̃A,BN > Nβ} = {τ̃A,BN > Nβ;TBN > Nβ}

∪ {τ̃A,BN > Nβ;TBN ≤ Nβ}.
(4.3.6)

The idea is to estimate the probability of each event in the right member of (4.3.6). For

the probability of the second event, we use a result proved in Section 10 of [6], which states

that for every subset D of Z
P(TD <∞) ≤ e−c|D|, (4.3.7)

where c is a positive constant. Hence, the probability of the second term is less than e−
cρηN

2 .

Now, we focus on the first term of (4.3.6). The first step will be to prove

lim
N→∞

P(τ̃A,BN > Nβ;TBN > Nβ;TBN[−N+1,N ] ≤ Nβ) = 0. (4.3.8)

Observe that

{τ̃A,BN > Nβ;TBN > Nβ}

⊂ {τ̃A,BN > Nβ;TBN > Nβ; lBNNβ < −(α− δ)βN ; rBNNβ > (α− δ)βN}

∪ {τ̃A,BN > Nβ;TBN > Nβ; lBNNβ ≥ −(α− δ)βN or rBNNβ ≤ (α− δ)βN}.
(4.3.9)

By (1.1.9), the limit when N goes to infinity of the probability of the second term in the
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right member of (4.3.9) is zero. In the first term, by the fact that lBNNβ is less than −N + 1

and rBNNβ is greater than N and the path crossing property, we have that ξBN[−N+1,N ](Nβ) =

ξB[−N+1,N ](Nβ). Since also in this event TB[−N+1,N ] > Nβ, then in the first term of (4.3.9)

we have TBN[−N+1,N ] > Nβ. These arguments yield (4.3.8). Thus, instead of proving that

the probability of the first term in the right member of (4.3.6) goes to zero when N goes

to infinity we prove that

lim
N→∞

P(τ̃A,BN > Nβ;TBN[−N+1,N ] > Nβ) = 0. (4.3.10)

For this purpose observe that

{τ̃A,BN > Nβ;TBN[−N+1,N ] > Nβ}

⊂ {τ̃A,B > Nβ; ∃ y ∈ BN : T yN > Nβ and ξ1[−N+1,N ](Nβ) = ξy[−N+1,N ](Nβ)}

∪ {τ̃A,B > Nβ; ∃ y ∈ BN : T yN > Nβ and ξ1[−N+1,N ](Nβ) 6= ξy[−N+1,N ](Nβ)}.

The first event above is empty by the priority of the particles of type 2 in all [−N + 1, N ].

The probability of the second event goes to zero as N goes to infinity because

{T yN > Nβ and ξ1[−N+1,N ](Nβ) 6= ξy[−N+1,N ](Nβ)} ⊂ {l[0,∞)
βN > −N + 1 or r

(−∞,−ηN ]
βN < N}

and by (1.1.9) the probability of this last event goes to zero when N goes to infinity.

Remark 4.2. Using the path crossing property and the attractiveness of the contact process

it is possible to prove that there exists a sequence βN that goes to zero such that for all s > 0

P(T1[−N,N ] > s; ξ1[−N,N ](s) /∈ BbN ) ≤ βN ,

where 0 < b < 1 and for ρ = µ(ξ : ξ(0) = 1)

BbN =

{
ξ ∈ {0, 1}[−N,N ] :

|ξ ∩ [−bN, 1]|
bN

≥ ρ

2

}
.

For details on this result see the proof of Theorem 4.20, page 257 in [17]. Then, for the
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stopping time Sk we have that

lim
N→∞

P(T1[−N,N ] > Sk; ξ
1
[−N,N ](Sk) /∈ BbN ) = 0. (4.3.11)

Now we are finally ready to prove Theorem 4.3

Proof of Theorem 4.3. For δ > 0 and 0 < γ < 1, set a = (1+γ)/(α−δ)+γ and b = 1/(α+δ),

where α is as in (1.1.9). We want to prove that

lim
N→∞

P(τ2,1N /N ≥ a) = 0 (4.3.12)

and

lim
N→∞

P(τ2,1N /N ≤ b) = 0. (4.3.13)

To deal with (4.3.12) we write the probability of the event as follows

P(τ2,1N /N ≥ a) =
∞∑
k=1

P(τ2,1N /N > a;G = k)

=

∞∑
k=1

2P(τ2,1N /N > a;G = k; ζ2,1Sk
(1) = 2),

(4.3.14)

where the second equality follows by the symmetry of the Harris construction. Thus, by

Lemma 4.2 we have that the series above converges uniformly in N , which implies that

lim
N→∞

P(τ2,1N /N ≥ a) =

∞∑
k=1

lim
N→∞

2P(τ2,1N /N > a;G = k; ζ2,1Sk
(1) = 2).

Then, instead of (4.3.12) we prove that for all k

lim
N→∞

P(τ2,1N /N > x;G = k; ζ2,1Sk
(1) = 2) = 0. (4.3.15)

In order to do that, we take ε > 0 and for this ε we choose M such that

P(M < Sk <∞) ≤ ε

and 0 < M < γN for N large enough. With these restrictions on M , we split the event in
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(4.3.15) as follows

P(τ2,1N ≥ Na;G = k; ζ2,1Sk
(1) = 2) = P(τ2,1N ≥ Na;M < Sk <∞;Sk+1 =∞; ζ2,1Sk

(1) = 2)

= P(τ2,1N ≥ Na;Sk < M ;Sk+1 =∞; ζ2,1Sk
(1) = 2).

(4.3.16)

By our choice of M we have that the first term at the right member of (4.3.16) is less

than ε/2. Therefore, we focus on the second term. Our selection of M and a implies the

following inequalities

P(τ2,1N ≥ Na; ζ2,1Sk
(1) = 2;Sk < M ;Sk+1 = +∞)

= P((τ2,1N − Sk) > Na− Sk; ζ2,1Sk
(1) = 2;Sk < M ;Sk+1 = +∞)

≤ P((τ2,1N − Sk) > Na−M ; ζ2,1Sk
(1) = 2;Sk < M ;Sk+1 = +∞)

≤ P(τ2,1N − Sk > N(1 + γ)/(α− δ); ζ2,1Sk
(1) = 2;Sk+1 = +∞),

(4.3.17)

rewriting the last term above and using Remark 4.1 we obtain that

P(τ2,1N ≥ Na;Sk < M ;Sk+1 =∞; ζ2,1Sk
(1) = 2)

≤ P(τ
ζ2,1,NSk
N /N > (1 + γ)/(α− δ); ζ2,1Sk

(1) = 2;S
ζ2,1Sk
2 = +∞)

≤ P(τ̃
ζ2,1,NSk
N /N > (1 + γ)/(α− δ)).

(4.3.18)

Remark 4.2 and Lemma 4.3 implies that the probability above converge to zero when N

goes to infinity. Back to (4.3.16), we have that

lim
N→∞

P(τ2,1N /N ≥ x;G = k; ζ2,1Sk
(1) = 2) ≤ lim

N→∞
P(τ̃

ζ2,1,NSk
N /N > x) + ε = ε,

for an arbitrary ε and (4.3.12) is proved.

To conclude the theorem it remains to show (4.3.13). For 0 < ε < δ, there exists T such

that for all t > T

(α− ε) < r
(−∞,0]
t /t < (α+ ε) and (α− ε) < −l[0,∞)

t /t < (α+ ε), (4.3.19)
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almost surely. Now, take N large enough such that bN > T and observe that

{l[0,−∞)
bN > −(α+ ε)bN ; ξ1[−N+1,N ](Nb) ∩ [−N + 1,−(α+ ε)bN ] 6= ∅}∩

{r(−∞,0]
bN < (α+ ε)bN ; ξ1[−N+1,N ](Nb) ∩ [(α+ ε)bN,N ] 6= ∅}

⊂ {τ2,1N > Nb},

(4.3.20)

then

{τ2,1N ≤ Nb} ⊂ {r(−∞,0]
bN ≥ (α+ ε)bN} ∪ {l[0,−∞)

bN > −(α+ ε)bN}

∪ {ξ1[−N+1,N ](Nb) ∩ [−N + 1,−(α+ ε)N ] = ∅;T1[−N+1,N ] > bN}

∪ {ξ1[−N+1,N ](Nb) ∩ [(α+ ε)bN,N ] = ∅;T1[−N+1,N ] > bN} ∪ {T1[−N+1,N ] ≤ bN}.
(4.3.21)

The probabilities of the first two terms in the right member of (4.3.21) go to zero when N

goes to infinity by (4.3.19). For the probability of the last term in (4.3.21), we use that

TN/E(TN ) converges in distribution to the exponential law with parameter 1. Also, it is

known that E(TN ) is exponential on N , then we can conclude that

lim sup
N→∞

P(T1[−N+1,N ] < bN) = 0.

By the symmetry of Harris construction the probability of the fourth term in (4.3.21) is

equal to the probability of the third. Therefore, it is enough to prove that the probability

of the third term in (4.3.21) is small when N goes to infinity. To obtain this limit, first

observe that by the path crossing property we have that

min ξ1[−N+1,N ](Nb) = min ξ1[−N+1,∞)(Nb) in {T1[−N+1,N ] > Nb}.

where ξ1[−N+1,∞) is the contact process restricted to [−N + 1,∞) with initial configuration

full occupancy. By the translation invariance of the Harris graph, the argument above and
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the symmetry of the law of Harris graph, we have that

P(min ξ1[−N+1,N ](Nb) > −(α+ ε)yN ;T1[−N+1,N ] > Nb)

= P(min ξ1[−N+1,∞)(Nb) > −(α+ ε)bN ;T1[−N+1,N ] > Nb)

≤ P(min ξ1[1,∞)(Nb) > (1− (α+ ε)b)N),

where 1 − (α + ε)b > 0, by our choice of b and since ε is smaller than δ. By the fact that

µ+ is stochastically smaller than ξ1[1,∞) we have the following inequality

P(min ξ1[1,∞)(Nb) > (1− (α+ ε)b)N) = P(minχN
Nb > (1− (α+ ε)b)N)

≤ µ+(χ : minχ > (1− (α+ ε)b)N).

Thus, we have that

lim
N→∞

P(max ξ1(−∞,0](Nb) < −(1− (α+ ε)b)N) = 0.

By all the arguments above we can conclude the limit (4.3.13).
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Future problems

There are many interesting questions for the contact process with two types of particles

and priority that can be addressed in future works.

For example, we would like to study if there is a metastability behavior when the

dynamic is restricted to [0, 1]× [1, N ], initial configuration 1{0}×[1,N ] + 21{1}×[1,N ] and the

particles of type 1 have priority in {0} × [1, N ] and the particles of type 2 in {1} × [1, N ].

Even the case R = 1, we can not use the ideas presented in Chapter 3, because the boundary

of interaction between the families of particles depends on N in this situation, different from

the one in Chapter 3.

Also, we want to have more information about the set of invariant measures for the

process. In Section 4.2.2, we only proved the existence of a non-trivial invariant measure

different from µ, which is also an invariant measure for the process.

A challenging problem for us is the case when the dynamic is restricted to [−N,N ]2

with initial configuration 1[−N,0]×[−N,N ] + 21[1,N ]×[−N,N ] and the particles of type 1 have

priority in [−N, 0] × [−N,N ] and the particles of type 2 in [1, N ] × [−N,N ]. We want to

understand if this model presents a metastability behavior. We need a different approach

from the one used in Chapter 2 and Chapter 3, because in Z2 the dynamic of the contact

process is more complicated.
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Appendix

Details on Bezuidenhout-Grimmett renormalization

In this section we adapt the Bezuidenhout-Grimmett renormalization for a layer with

fixed width 2L+1. We prove the existence of a 1-dependent percolation system with closure

below δ, Φ in {0, 1}Λ. The map Φ is defined using the contact process restricted to the

layer [−L,L]× Z, with infection parameter λ > λL, where

λL = inf{λ : Pλ(ξ[−L,L]×Z(t) 6= ∅ ∀t) > 0}.

This percolation system will be used in the next section to prove that outside an event with

small probability, if the contact process in the layer survives for a time t, then at this time

there is no empty segment (also called gap) of length
√
t.

In order to choose r, K and T such that Φ has closure close to 0 we present several

results introduced in [3].

To simplify notation, during this section we refer to the contact process restricted to

BL = [−L,L]×Z, with initial configuration A ⊂ [−L,L]×Z, as ξABL(t). In the special case

A = [−L,L]× Z we write ξ1BL(t). The fact that λ > λL implies that for ε > 0 there exists

r large enough such that

Pλ(ξRBL(t) 6= ∅, ∀t) > 1− 1

2
ε8, (4.3.22)

where R = [−L,L] × [−r, r]. In the first step we show that with large probability the

rectangle R is connected to many points in the top and the faces of a large space time box.

To enunciate this result, we need more notation:

For a space time box B(K,S) = [−L,L]×[−K,K]×[0, S] we define T1(K,S) the number

of points in [−L,L]× [0,K]× {S} connected with R× {0} inside B(K,S). T2(K,S) refers
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to the equivalent variable for the octant [−L,L]× [−K, 1]× {S}.
We define F1(K,S) = [−L,L]× {K} × [0, S] the right side of the box B(K,S). Choose

h ∈ (0, (1 + 4λ)−1) and denote N1 = N1(K,S) as the number of points in F1 at distance h

from each other, connected with R × {0} inside B(K,S). We refer to the left side of the

box as F2 and N2 is the corresponding variable. Also we define the total number of infected

sites on the top of the box and at the sides as

T (K,S) = T1(K,S) + T2(K,S),

and

Ns(K,S) = N1(K,S) +N2(K,S),

respectively. Their sum is denoted by

N(K,S) = T (K,S) +Ns(K,S).

With h ∈ (0, (1 + 4λ)−1) , let α be the minimum of the probabilities of the following events

i) (x, 0, 0) is connected to R× {h} inside R× [0, h] for every x ∈ [−L,L],

ii) (x, 0, 0) is connected to R× {h} ± (0, r, 0) for every x ∈ [−L,L].

Let M large enough to ensure that (1 − α)M ≤ ε. We take N large enough such that in

any subset of Z2 or Z having more than N elements, there are at least M points such that

every pair of these points are at distance 3r + 1 apart.

The proof of the following lemma is basically the same as that of Lemma (7) in [3]. The

only difference is the fact that we are dealing with the contact process restricted to a layer

and in the original paper their work for Z2 but all the arguments there are valid to our

case.

Lemma 4.4. For ε > 0 there exist M,N ∈ N, K and S such that

P(Ti(K,S) > 2N) > 1− ε, (4.3.23)

and

P(NFi(K,S) > 4MN) > 1− ε. (4.3.24)
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Proof. Observe that for all t > 0

P(ξRBL dies | |ξRBL(t)| < 2N) ≥ (1 + 4λ)−2N .

Therefore

P(ξRBL survives ; |ξRBL(t)| < 2N for arbitrarily large times t) = 0.

By our selection of R we have that

P(ξRBL survives; ∃T1 such that ∀t ≥ T1|ξRBL(t)| ≥ 2N) ≥ 1− 1

2
ε2,

then there exists T1 such that

P(∀t ≥ T1, |ξRBL(t)| ≥ 2N) ≥ 1− 1

2
ε2. (4.3.25)

From the equation above we have that for all t ≥ T1 there exists K = K(t) such that

P(T (K, t) ≥ 2N) ≥ 1− 2

3
ε2. (4.3.26)

By FKG inequality we have that

P(Ti(K, t) ≤ N)2 = P(T1(K, t) ≤ N)P(T1(K, t) ≤ N) ≤ P(T (K, t) ≤ 2N) ≤ ε2. (4.3.27)

Hence we concluded the first inequality in the Lemma for any S ≥ T1.

For the second equation, we define s(K(t)) as the infimum of the times such equation

(4.3.26) is not satisfies. Because P(T (K, t) > 2N) is a continuous function of t, s is such

that P(T (K, t) > 2N) = 1− ε2. We write Bk for the box of dimensions k, sk = s(k) with k

going to infinity and P(T (k, sk) > 2N) = 1− ε2. We write Nk = T (k, sk) +Ns(k, sk). It is

proved in the same way as in [3] that

P(∀k ≥ k0, Nk ≥ 2N(2M + 1)) > 1− ε4, (4.3.28)
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from (4.3.28) and our selection of sk we have that

ε4 ≥ P(T (k, sk) +Ns(k, sk) < 2N(2M + 1))

≥ P(T (k, sk) < 2N)P(Ns(k, sk) < 4NM)

= ε2P(Ns(k, sk) < 4NM),

which imply that

P(Ns(k, sk) > NM) ≥ 1− ε2.

As in (4.3.27) we use FKG inequality to conclude that

P(Ni(k, sk) ≤ 2NM)2 = P(N1(k, sk) ≤ 2NM)P(N2(k, sk) ≤ 2NM) ≤ P(Ns(k, sk)) ≤ ε2.
(4.3.29)

To prove (4.3.28) the idea is first prove that for ν ∈ N and k ≥ 1

P(ξRBL dies out |Nk ≤ ν) ≥
(

1− 4λh

1 + 4λ

)ν
, (4.3.30)

ones we have this inequality (4.3.28) runs as (4.3.25).

To obtain (4.3.30) we first observe that for every x on the top of Bk we prevent the

spread of the infection through the line x × [sk,∞) if it happens a mark of death before

any mark of infection, this has probability 1/(1 + 4λ) ≥ (1 − 4λh)/(1 + 4λ). Now we

estimate the probability of the event there is non spread of infection through the sides of

Bk. For z in [−L,L] × {−k} ∪ [−L,L] × {k} let us organize, by the increasing order of

the second coordinates, the set of points in {z} × [0, sk] connected with R × {0} inside

the interior of Bk and denoted them by (z, p1), . . . , (z, pn). Divided the points (z, pi) into

groups {(z, pil), . . . , (z, pjl)} satisfying (i) and (ii) below

i) pjl − pil < h,

ii) pil+1
− pil > h.

Let m(z) the number of groups that we can construct with these characteristics. Also

denote il( jl − 1) the small(higher) index such that (z, pil)( (z, pjl−1)) belong to the l-th

group. The probability that there is non infection trough the segment {x} × (pi−1, pi) to
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outside Bk is given by
1

1 + 4λ
+

4λ

1 + 4λ
e−(1+4λ)yi ,

where yi = pi − pi−1. Then the probability that there is non infection leaving Bk trough

the line {x} × [0, sk] is given by

n∏
i=1

1

1 + 4λ
+

4λ

1 + 4λ
e−(1+4λ)yi ≥

m∏
τ=1

1

1 + 4λ

jτ∏
l=1

(
1

1 + 4λ
+

4λ

1 + 4λ
e−(1+4λ)yl

)
,

in order to estimate this quantity observe that

(1 + 4λ)−1(1 + 4λe−(1+4λ)yl) = (1 + 4λ)−1 + (1 + 4λ)−14λe−yle−4λyl

≥ (1 + 4λ)−1e−4λyl +
4λ

(1 + 4λ)
e−he−4λyl

≥ e−4λyl

(
1

(1 + 4λ)
+

4λ

(1 + 4λ)
(1− h)

)
≥ e−4λyl

(
1

(1 + 4λ)
+

(4λ)2

(1 + 4λ)

)
≥ e−4λyl ,

where the second inequality use the fact that e−x ≥ (1 − x), the third is because h ≤
(1 + 4λ)−1 and the last inequality use that λ > 1

4 . Therefore, we obtain that

m∏
τ=1

jτ∏
l=1

1

1 + 4λ

(
1

1 + 4λ
+

4λ

1 + 4λ
e−(1+4λ)yl

)
≥
(

1

1 + 4λ

)m m∏
τ=1

jτ−1∏
l=iτ

e−4λyl

≥
(

1

1 + 4λ

)m m∏
τ=1

(1− 4λΣjτ−1
l=iτ

yl)

≥
(

1− 4λh

1 + 4λ

)m
,

the second inequality above use again that e−x ≥ (1 − x). Running over all x in the sides

we have that the probability that the infection do not leave Bk trough the sides of the box
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is at least

∏
z∈[−L,L]×{−k}∪[−L,L]×{k}

(
1− 4λh

1 + 4λ

)m(z)

≥
(

1− 4λh

1 + 4λ

)Ns(sk,k)

.

Now it is easy to conclude (4.3.30), finishing the lemma.

In the second step we construct a “seed” (a fully occupied translate of the rectangle

R) in the side of the box B(K,S). From this seed we iterated Lemma 4.4. The following

Lemma is the equivalent to Lemma (18) in [3]. We rewrite the proof of the original lemma

because we have a restriction in the first coordinate.

Lemma 4.5. Suppose P(ξ0
BL

survives) > 0 and ε > 0. There exists r, K and T such that

the following holds: with Pλ-probability greater than 1− ε, there exists a translate ∆ of the

rectangle R, as in (4.3.22) such that

(i) ∆ ⊂ [−L,L]× [K, 2K],

(ii) There exists t ∈ [T, 2T ] such that R × {0} is connected inside [−L,L] × [−K, 3K] ×
[0, 2T ] to every point in ∆× {t}.

Proof. With r as in (4.3.22), h ∈ (0, (1 + 4λ)−1), M and N defined as before. Also we

choose K and S as in Lemma 4.4 and we set T = S+h. By Lemma 4.4 we have that, with

probability larger than 1−ε, there exists NM points connected with R in the side F3 of the

box B(K,S), and this points are at distance h. There exists at least one line (x,K)× [0, S]

such that it has at least M points at distance h from each other. Then with probability

larger than 1 − ε we have that there exists one time s such that (x,K, s) is connected to

(R+ (0, r+K))×{s+h}. Define τ as the smaller time such that R×{0} is connected to a

translate R′ = [−L,L]× [K,K + 2r]. By our discussion above we have that the probability

that τ ∈ [0, S + h] is larger than (1− ε)2.

Using the Strong Markov Property and Lemma 4.4, we have that R′×{τ} is connected

with N points in [−L,L]× [K + r, 2K + r]× {τ + S}.
From those N points we select M points such that each pair of points is at distance

at least 3r + 1. We denote this subset of points as A. For every z = (x, y) ∈ A with

the second coordinate less than 2K we associate the cylinder Ry × [τ + S, τ + S + h]. For

every z = (x, y) ∈ A with the second coordinate greater than 2K we associate the cylinder

77



(Ry − (0, r)) × [τ + S, τ + S + h]. These cylinders are disjoint, and by our selection of

M we have that with probability larger than (1 − ε) at least one z = (x, y) ∈ A satisfies

(z, τ + S)→ z′ × {τ + S + h} inside R̃× [τ + S, τ + S + h] for every z′ ∈ R̃, where R̃ is Ry

or Ry − (0, r) depending on the second coordinate of z. Therefore, we get a translation of

R in [−L,L]× [K, 2K]× [S + h, 2(S + h)], connected inside [−L,L]× [−K, 3K]× [0, 2T ].

With probability greater than (1−ε)4, the construction above give a translation ∆×{s}
of R× {0} such that ∆× {s} ⊂ [−L,L]× [K, 2K]× [T, 2T ].

The final step is to repeat Lemma 4.5 many times in order to enlarge the dimension of

the renormalized box with the aim that Ψbg(m,n) will be a 1-dependent system. In the

following lemma we use the notation Ry = [−L,L]× [−r, r] + (0, y).

Lemma 4.6. For any ε > 0, j ∈ N, y ∈ [−2K, 2K] and t ∈ [0, 2T ] with Pλ-probability

larger than (1− ε)2j, there exists a translation of Ry × {t}, Π, such that

(i) Π ⊂ [−L,L]× [−2K + jK, 2K + jK]× [j2T, (j + 1)2T )],

(ii) Ry × {t} is connected to all points in Π inside the region⋃
0≤i≤j−1

[−L,L]× [−3K + iK, 4K + iK]× [0, 2T + i2T ]. (4.3.31)

Proof. The proof of this lemma is basically the proof of Lemma (19) in [3].

We first prove the Lemma for j = 1. To obtain the result we use Lemma 4.5 and Strong

Markov property.

Case 1 y ∈ [−2K,K] and t ∈ [T, 2T ]. By Lemma 4.4 we have that with probability larger

than (1 − ε) there exists a translation of Ry × {t} [−L,L] × [K + y, 2K + y] × s

with s ∈ [T + t, 2T + t], such that every point in this translation is connected with

Ry×{t} inside [−L,L]× [−K+y, 3K+y]× [t, 2T + t]. This way we have a translation

Π in [−L,L] × [−K, 3K] × [2T, 4T ] with all points connected with Ry × {t} inside

[−L,L]× [−3K, 4K]× [0, 4T ], with probability larger than (1− ε).

Case 2 y ∈ [K, 2K] and t ∈ [T, 2T ]. By Lemma 4.4 we have that with probability larger

than (1− ε) there exists a translation of Ry ×{t} in [−L,L]× [−2K + y,−K + y]× s
with s ∈ [T + t, 2T + t], such that every point in this translation is connected with

78



Ry×{t} inside [−L,L]× [−3K+y,K+y]× [t, 2T + t]. This way we have a translation

Π in [−L,L] × [−K,K] × [2T, 4T ] with all points connected with Ry × {t} inside

[−L,L]× [−2K, 3K]× [0, 4T ], with probability larger than (1− ε).

Case 3 y ∈ [−2K, 0] and t ∈ [0, T ]. By Lemma 4.4 we have that with probability larger than

(1 − ε) there exists a translation of Ry × {t} in [−L,L] × [K + y, 2K + y] × s with

s ∈ [t, T+t], such that every point in this translation is connected with Ry×{t} inside

[−L,L]× [−K+ y, 3K+ y]× [t, T + t]. This way we have a translation Π in [−L,L]×
[−K, 2K]×[T, 2T ] with all points connected with Ry×{t} inside [−L,L]×[−3K, 3K]×
[0, 2T ]. Since the center of the translation Π is in [−L,L] × [−K, 2K] × [T, 2T ] we

can apply Case 1 or Case 2 to find a translate of Π in [−L,L]× [−K, 3K]× [2T, 4T ]

connected inside [−L,L] × [−3K, 4K] × [0, 4T ]. The composite of the two steps is

successful with Pλ-probability greater than (1− ε)2.

The other cases are very similar to Case 3.

For j ≥ 2 we iterated the construction above and use the Strong Markov property.

Taking j = 11 in Lemma 4.5 we obtain the following proposition.
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